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Abstract

The overall purpose of this research was to better understand the performance of a

self-referencing interferometer (SRI) when used with extended beacons in strong at-

mospheric turbulence. It was performed by assuming the extended beacon could be

modeled as a Gaussian Schell-model beam, then analyzing the effect of propagating

this beam through strong atmospheric turbulence. Since the operation of an SRI re-

quires coupling this light into a single-mode optical fiber, analytic expressions of the

mean and normalized variance of the coupling efficiency were derived. An improved

noise model for the SRI was then developed that included all potential noise sources

such as intensity fluctuations of the incident light, the single-mode fiber coupling effi-

ciency, the spatial and temporal coherence properties of the light, and other additive

noise sources. Whenever simplifying assumptions were used, the results were com-

pared to numerically evaluated exact expressions or Monte Carlo simulations. Any

resulting error was identified then typically compensated. These results not only serve

to address problems when using adaptive optics to correct for strong turbulence using

extended beacons, but may also be useful in other applications such as directed energy,

free-space optical communications, stellar interferometry, and ladar/lidar systems.
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MODELING SELF-REFERENCING INTERFEROMETERS WITH EXTENDED

BEACONS AND STRONG TURBULENCE

I. Introduction

The astronomical and military research communities have achieved a great deal of

success in improving imaging performance of ground-based telescopes by compensat-

ing for distortions due to atmospheric turbulence with adaptive optics (AO) [70, 84].

AO typically compensates for atmospheric distortions in real-time by using a wave-

front sensor (WFS) to measure the distortions with respect to a reference wavefront,

then uses those measurements to reshape a deformable mirror (DM) in a manner

conjugate to the distortion. Not only can this be used to correct incoming light, but

it can also be used to precondition outgoing laser beams. Lasers that have been pre-

conditioned in this way put more energy into a smaller area at their target [84]. This

technique has military applications in long range imaging, laser communications, and

laser weapons. The research reported here focused on two challenging areas for AO:

large irradiance fluctuations of the measured light and extended beacons. The overall

goal was to better understand and quantify how they affect a specific WFS known as

the self-referencing interferometer (SRI).

This chapter states the overall problem the research was designed to address, then

outline the methodology used to address it. Background material on the propagation

of random electromagnetic fields through atmospheric turbulence and the function of

an SRI are given in Chapter II. Chapter III reviews the currently published litera-

ture that is relevant to this research, and identifies the areas that were available for

additional significant contributions. The bulk of the research, along with the major

1



results, is located in Chapters IV–VI. Chapter IV describes a more accurate method

of estimating a key parameter of random beams as they propagate through atmo-

spheric turbulence of all strengths, Chapter V derives analytic expressions for the

average coupling efficiency and its variance of these beams into single-mode optical

fibers, and Chapter VI presents a more accurate noise model for the SRI than has

been previously published. These results are used in Chapter VII to discuss how

strong atmospheric turbulence and extended beacons affect the performance of an

SRI. Additionally, it enumerates the novel contributions of this research, and makes

suggestions for future applications and work.

1.1 Problem Statement

Much of the success of AO has been limited to circumstances of relatively weak

turbulence, for example when imaging a star nearly overhead. Because astronomers

are interested in viewing as much of the sky as possible, they are quickly progressing

towards similar success in imaging through moderate turbulence caused by propaga-

tion through thicker sections of atmosphere associated with lower elevation angles [86].

However, adaptive optics for military applications, like those on airborne platforms,

must be able to sense and correct for extremely strong turbulence caused by prop-

agation along horizontal paths through the atmosphere, as well as the turbulence

associated with the movement of the platform through the atmosphere [84]. In addi-

tion, unlike in many astronomical applications, there is rarely a point source beacon

available that can be used as a reference for measuring the atmospheric disturbances,

so an extended beacon must be used instead [72] as shown in Fig. 1. The military in-

terest in this area is so significant that the Air Force Scientific Advisory Board (SAB)

recently issued a “horizontal propagation compensation” (HPC) challenge to focus

research efforts on the problem of AO in deep turbulence engagement scenarios [69].

2



Figure 1. Schematic diagram of the adaptive optics problem to be addressed in this
research.

This research into the performance of an SRI when used with strong turbulence and

extended beacons serves to address one particular part of this overall problem, and

provides some needed analytic tools to aid in further answering this challenge.

1.2 Methodology

As indicated in Fig. 1, there are three primary parts to the problem at hand. The

first is to identify an extended source model to generate the fields to be measured

by the SRI. Ideally, this source model should be flexible enough to describe a wide

range of potential source beacons, yet simple enough to produce analytically tractable

results. The second part is to describe the evolution of these fields as they propa-

gate through atmospheric turbulence. The goal here is to analytically relate the key

characteristic parameters of the fields at the end of the propagation path to key pa-

rameters of the initial fields and the intervening atmospheric turbulence. In keeping

with the HPC challenge, it is be assumed the turbulence is statistically homogeneous

across the the entire propagation path. The final part is to analyze the effect of these

fields on the performance of of an SRI. Since AO system performance is typically di-

rectly related to the cumulative phase error variance of the system components [73],

the goal here is to derive a noise model for an SRI that estimates its phase error

variance given the key characteristics of the incident field and typical noise sources.

3



By this method, it should be possible to predict the expected performance of an SRI

given a particular source and turbulence profile.

1.2.1 Source Beacon Characteristics.

In practice, there are several ways in which an extended beacon can be formed.

It can be the result of passive reflection (glint) from a bright third party source (such

as the sun), from active illumination by the optical system, or the source may be

self-luminescent. Each of these different methods have their own set of benefits and

drawbacks, but ultimately what matters most is the nature of the light emanating

from the source, not how the light was initially formed. The key characteristics are

its size, coherence, and polarization properties.

The source will be of finite size, but typically too large to be considered a point

source. While the shape of the source may be oblong or even irregular, to simplify the

problem only circularly symmetric sources will be considered in this analysis. The

results of this analysis may then be extended to elliptically shaped sources without

undue difficulty.

The coherence properties of the source describe its statistical nature and can be

defined both spatially and temporally. This research assumes that the source is cross-

spectrally pure, meaning the spatial and temporal coherence properties can be treated

separately [38,57]. It further assumes that the source is statistically homogeneous, or

that correlations of the field depend only on spatial or temporal separation distances

and not their actual locations. While it is possible to find situations where these

assumptions do not hold, they should still be sufficient to simplify the analysis and

yet cover a wide range of expected sources.

While the light emanating from the source comprises a vector field, this analysis

assumes that scalar diffraction theory holds. This means that not only is there no
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coupling between the various components of the field [39], but there is no coupling

between its degree of polarization and degree of coherence [95]. This is the case as

long as the source is either linearly polarized, or it is unpolarized and the orthogonal

components of the field tangential to the direction of propagation are statistically

identical [50]. Since unpolarized light can act as an additional noise source for an

SRI, it will generally be assumed the source is linearly polarized (or that a linearly

polarized filter is used prior to the SRI.)

One source model that has been used extensively in the literature and fits the

above criteria is the Gaussian-Schell model (GSM) [24, 26, 37, 47, 49, 53, 57, 68, 78, 80,

88,97]. It can be used to model any source size from a point source to a plane wave,

or any coherence size from fully coherent to fully incoherent. Since it is completely

defined in terms of Gaussian functions, it provides analytically tractable results in

many instances. For these reasons, a GSM source was selected to form the basis of

this research. Further information on GSM sources and beams is given in Chapter II.

1.2.2 Atmospheric Turbulence.

Characterizing atmospheric turbulence has been a topic of study since the 1940’s [48].

While there are several turbulence models available, they mostly differ in the way

they characterize very large or very small spatial frequencies [2]. The middle region,

known as the inertial subrange, is typically the same in all models. Since separation

distances of interest typically fall within the inertial subrange, the research focused

on this region.

Turbulence can be characterized as either weak or strong. Weak turbulence is

where the turbulence mainly acts to randomly refract the propagating field. This

refraction primarily affects the phase of the field, and it can be accurately described

using Rytov perturbation theory [2, 43, 82]. However, in strong turbulence, this re-
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fraction culminates in diffraction which is observed as large amplitude fluctuations of

the field. In this case, Rytov theory is no longer sufficient, and alternative methods

must be used to characterize its effects [2, 43].

The intent of this portion of the research is to understand the statistical char-

acteristics of a field at the end of a propagation path given its statistical properties

at the beginning of the path and the profile of the intervening turbulence. Since

there are no exact solutions to this problem, it becomes an exercise in selecting the

best approximation. Not only is it important to understand which method gives the

most accurate result for a given condition, but also the size of its error. With this

information, empirical compensation can be used to increase its accuracy.

1.2.3 SRI Performance.

The SRI is a relatively simple optical system that comprises beam splitters, mir-

rors, coupling lenses, a single-mode optical fiber, and a detector. Assuming proper

alignment, the only components that contribute significantly to the measurement

noise of the SRI are the single-mode fiber and the detector. This portion of the re-

search is therefore broken into two parts: analyzing the effect of coupling random

fields into a single-mode fiber, and developing an overall noise model for the SRI.

While much work has been done to characterize the mean coupling efficiency of

random fields into single-mode fibers [23, 75, 79, 94], very little has been done on

characterizing its variance [75,79]. Furthermore, past studies have typically assumed

insignificant amplitude fluctuations in the incident field. The goal of this study is to

not only develop analytic expressions for the mean coupling efficiency and its variance,

but also to analyze the effect when the incident field contains significant amplitude

fluctuations. This study will not only aid the development of a noise model for an SRI,

but it can also contribute to the characterization of other systems that incorporate
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single-mode fibers, such as free-space optical communication, stellar interferometry,

and ladar/lidar systems [23, 45, 75, 79, 90, 94].

The major sources of detector noise are shot noise, read noise, and quantization

noise. Since they are independent noise sources, they can be treated separately. Read

noise and quantization noise are due to the electronic read-out circuitry and have been

extensively studied [46]. Shot noise is due to the wave/particle duality of light and is

fundamental to any light measuring device [38]. As shot noise is directly related to the

intensity of the light incident on the detector, all the sources of intensity randomness

(partial coherence of the light source, atmospheric turbulence, and the fiber coupling

efficiency) contribute to the overall shot noise. By taking into account all of these

sources of randomness, it is possible to develop an SRI noise model that is appropriate

for nearly any given situation.

1.3 Original Contributions

Some of the significant contributions of this research include

1. A generally more accurate method of estimating the coherence radius of partially

coherent Gaussian beams at all levels of turbulence,

2. A better understanding of the shape of the coherence function of partially co-

herent Gaussian beams at all levels of turbulence,

3. Constraints on the degree of coherence of a GSM source that would allow for

the use of an SRI to predominately measure atmospherically induced phase

perturbations,

4. Analytic expressions for the mean coupling efficiency of GSM beams into single-

mode optical fibers,
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5. Analytic expressions for the coupling variance of GSM beams into single-mode

optical fibers,

6. A better understanding of the effect of speckle on the coupling of GSM beams

into single mode optical fibers,

7. A more accurate noise model for an SRI,

8. A better understanding of the effect of extended beacons and strong turbulence

on the performance of an SRI.

Many of these results can be used in other optical applications as well. The

first two may be useful in any application where partially coherent Gaussian beams

traverse atmospheric turbulence. This includes free-space optical communication and

ladar/lidar. Items four through six can be applied to any application where random

fields that can be closely approximated as GSM beams couple into single mode optical

fibers. These results also provide a method that can be used to analyze the coupling

of GSM beams into multi-mode optical fibers. The SRI noise model can not only be

used to predict SRI performance in a given situation, but also used as a design aid

when building an SRI for a given application. As such, it may serve as the basis for

trade studies among the various SRI design parameters.
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II. Background

This research required the use of many branches of optics including Fourier optics,

statistical optics, atmospheric turbulence theory, interferometry, and guided-wave

optics. As a result, it is important to understand the basics of each of these fields and

how they apply to the problem at hand. The following overview focuses on the cases

where a light source can either be considered a point source or a Gaussian beam.

This chapter begins by outlining scalar diffraction theory and coherence theory.

Based on this foundation, GSM sources and fields are then defined. This is followed

by an overview of both weak and strong turbulence theory. Finally, the SRI is defined

along with the basics of its operations. Particular attention is given to the behavior

of single-mode optical fibers and the use of phase shifting interferometry (PSI) to

make the SRI measurements.

2.1 Scalar Diffraction Theory

As with any theory that deals with the propagation of electro-magnetic waves,

scalar diffraction theory begins with Maxwell’s equations. Given certain assumptions

regarding the propagation medium, Maxwell’s vector equations can be reduced to

uncoupled scalar equations. These scalar equations form the basis of the Rayleigh-

Sommerfeld equation which can be used to calculate the field at any point given the

field along a two-dimensional plane. Assumptions regarding the geometry of this

propagation allow for a simplification of the Rayleigh-Sommerfeld equation, known

as the Fresnel approximation, which then forms the basis of Fourier optics.
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2.1.1 Maxwell’s Equations.

The starting point for describing electromagnetic propagation through any medium

is Maxwell’s equations [44]. They can be expressed in vector form and SI units as

∇ ⋅D = 𝜌, (2.1.1)

∇ ⋅B = 0, (2.1.2)

∇×E+
∂B

∂𝑡
= 0, (2.1.3)

∇×H− ∂D

∂𝑡
= J, (2.1.4)

where D is the electric displacement, 𝜌 is the charge density, B is the magnetic induc-

tion, E is the electric field, H is the magnetic field, and J is the current density. For

linear and isotropic materials, such as the atmosphere, there is a simple relationship

between D and E, and B and H such that

D = 𝜖E, (2.1.5)

B = 𝜇H, (2.1.6)

where 𝜖 is the electric permittivity of the medium and 𝜇 is the magnetic permeability

of the medium. With the additional assumptions that there are no free charges or

current, the medium is nonmagnetic (𝜇 = 𝜇0, the permeability of vacuum), and

𝑬∂𝜖/∂𝑡≪ 𝜖∂E/∂𝑡, Eqs. (2.1.1)–(2.1.4) can be expressed in terms of the electric and

magnetic fields

∇ ⋅ 𝜖E = 0 (2.1.7)

∇ ⋅H = 0 (2.1.8)

∇× E = −𝜇0∂H

∂𝑡
(2.1.9)
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∇×H = 𝜖
∂E

∂𝑡
. (2.1.10)

Combining the curl of Eq. (2.1.9) with Eq. (2.1.7) produces the wave equation for

electromagnetic propagation in a linear, isotropic, nonmagnetic medium

∇2E+∇ (E ⋅ ∇ ln 𝜖) = 𝜇0𝜖
∂2E

∂𝑡2
. (2.1.11)

An equivalent wave equation can be derived for the magnetic field in the same manner.

As long as ∇ (E ⋅ ∇ ln 𝜖) ≪ ∇2E, the second term on the left of Eq. (2.1.11) can be

ignored. This is obviously the case in a homogeneous medium where ∇ ln 𝜖 = 0,

but even in a non-homogeneous medium such as atmospheric turbulence this is often

the case [2]. This results in a set of three uncoupled equations which describe the

behavior of each component of the electric field. Since the behavior is identical for

each component, it is only necessary to solve a single scalar equation to describe the

behavior of the entire field.

Assuming the field is monochromatic, one component of E can be approximated

as a complex analytic signal with

𝐸(𝒓, 𝑡) ≃ 𝐴(𝒓) exp {j [𝜙(𝒓)− 2𝜋𝜈𝑡𝑡]} , (2.1.12)

where 𝐴 is the amplitude and 𝜙 is the phase at any location in free space, 𝜈𝑡 is the

central optical frequency, and j =
√−1. The physical field is simply found from

Eq. (2.1.12) by doubling its real part [57]. Since 𝐴 and 𝜙 only depend on position

and not time, let

𝑈 = 𝐴 exp (j𝜙) (2.1.13)

so

𝐸(𝒓, 𝑡) ≃ 𝑈(𝒓) exp (−j2𝜋𝜈𝑡𝑡) . (2.1.14)
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Inserting (2.1.14) into the component version of (2.1.11) gives

[∇2 + (2𝜋𝜈𝑡)2 𝜇0𝜖]𝑈 = 0. (2.1.15)

Using the definitions of 𝑛 = (𝜖/𝜖0)
1/2 and 𝑐 = (𝜇0𝜖0)

−1/2, as well as defining 𝑘 =

2𝜋𝜈𝑡/𝑐, Eq. (2.1.15) can be written as the Helmholtz equation

(∇2 + 𝑘2𝑛2
)
𝑈 = 0. (2.1.16)

Assuming a homogeneous medium with 𝑛 ∼= 1, one of the simplest solutions to

Eq. (2.1.16) is that of a point source located at 𝒓0 given by

𝑈(𝒓) =
exp(j𝑘∣𝒓 − 𝒓0∣)
∣𝒓 − 𝒓0∣ . (2.1.17)

However, what is desired is an expression for the field at one point given the field

on a plane a distance 𝐿 away. This can be found using the Rayleigh-Sommerfeld

equation.

2.1.2 Rayleigh-Sommerfeld Equation.

The Rayleigh-Sommerfeld is derived through the use of Green’s Theorem

∫∫∫
𝒱

(𝑈∇2𝐺−𝐺∇2𝑈) d𝑣 =
∫∫

𝒮

(
𝑈
∂𝐺

∂𝑛
−𝐺

∂𝑈

∂𝑛

)
d𝑠, (2.1.18)

where 𝑈 and 𝐺 are continuous scalar fields, along with their first and second partial

derivatives, 𝒱 is a given volume with volume element d𝑣, 𝒮 is the surface of the
volume with surface element d𝑠, and ∂/∂𝑛 is a partial derivative in the outward

normal direction of surface 𝒮. As long as both 𝑈 and 𝐺 satisfy Eq. (2.1.16), the left

side of Eq. (2.1.18) equals zero.
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If the 𝐺 used is a point source like that of Eq. (2.1.17), that point must be

excluded from the volume, otherwise the field within the volume would contain a

discontinuity. That means the volume actually has two surfaces: an outer surface

and a diminishingly small inner surface. Evaluating the integral along in the inner

surface, Eq. (2.1.18) becomes

𝑈(𝒓0) =
1

4𝜋

∫∫
𝒮

(
𝐺
∂𝑈

∂𝑛
− 𝑈 ∂𝐺

∂𝑛

)
d𝑠, (2.1.19)

where 𝒓0 is the location of the discontinuity [39] and the integration now only over

the outer surface.

If 𝑆 is composed of two surfaces, a plane located a distance 𝐿 from 𝒓0 and a sphere

extending out to infinity, then as long as

lim
𝑅→∞

𝑅

(
∂𝑈

∂𝑛
− j𝑘𝑈

)
= 0, (2.1.20)

where 𝑅 is the radius of the sphere, the integral over the surface of the sphere does

not contribute to the total and can be ignored [39]. The integral in Eq. (2.1.19) now

only needs to be performed over the plane.

By choosing 𝐺 such that it is composed of two point sources, one at 𝒓0 and the

other at the exact opposite side of the plane, which are radiating 180 ∘ out of phase,

𝐺 is exactly zero along the plane. The partial derivative of 𝐺 with respect to the

surface normal along that surface can be expressed as

∂𝐺

∂𝑛
= 2 cos(𝒏, 𝒓′ − 𝒓0)

(
j𝑘 − 1

∣𝒓′ − 𝒓0∣
)
exp(j𝑘∣𝒓′ − 𝒓0∣)
∣𝒓′ − 𝒓0∣ , (2.1.21)

where 𝒏 is the plane’s surface normal vector and 𝒓′ is a point on the plane [39].
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Assuming ∣𝒓′ − 𝒓0∣ ≫ 𝜆, the second term can be dropped leaving

∂𝐺

∂𝑛
= 2j𝑘 cos(𝒏, 𝒓′ − 𝒓0)

exp(j𝑘∣𝒓′ − 𝒓0∣)
∣𝒓′ − 𝒓0∣ . (2.1.22)

Making all these changes to Eq. (2.1.19) produces the Rayleigh-Sommerfeld equation

𝑈(𝒓0) =
1

j𝜆

∫∫
𝒫

𝑈(𝒓′)
exp(j𝑘∣𝒓′ − 𝒓0∣)
∣𝒓′ − 𝒓0∣ cos(𝒏, 𝒓′ − 𝒓0) d𝒓

′, (2.1.23)

where 𝑈(𝒓′) is the field along the plane 𝒫.

2.1.3 Non-monochromatic Light.

While the above analysis only strictly applies to monochromatic waves, it can be

extended to non-monochromatic fields using Fourier analysis. A non-monochromatic

complex analytic signal can be defined by the inverse Fourier transform of its fre-

quency components as1

𝐸(𝒓, 𝑡) =

∫ ∞

0

𝒰(𝒓, 𝜈𝑡) exp(−j2𝜋𝜈𝑡𝑡) d𝜈𝑡. (2.1.24)

Since the Fourier components are monochromatic, they individually propagate ac-

cording to the Rayleigh-Sommerfeld equation as

𝒰(𝒓0, 𝜈𝑡) = −j𝜈𝑡
𝑐

∫∫
𝒫

𝒰(𝒓′, 𝜈𝑡)
exp(j2𝜋𝜈𝑡∣𝒓′ − 𝒓0∣/𝑐)

∣𝒓′ − 𝒓0∣ cos(𝒏, 𝒓′ − 𝒓0) d𝒓
′. (2.1.25)

1The integral starts at zero since a complex analytic signal has no negative frequency compo-
nents [57].

14



Taking the inverse Fourier transform of this expression and changing the order of

integration produces

𝐸(𝒓0, 𝑡) =

∫∫
𝒫

cos(𝒏, 𝒓′ − 𝒓0)

2𝜋𝑐∣𝒓′ − 𝒓0∣
×
∫ ∞

0

(−j2𝜋𝜈𝑡)𝒰(𝒓′, 𝜈𝑡) exp

[
−j2𝜋𝜈𝑡

(
𝑡− ∣𝒓

′ − 𝒓0∣
𝑐

)]
d𝜈𝑡 d𝒓

′. (2.1.26)

Given

∂

∂𝑡
𝐸(𝒓, 𝑡) =

∫ ∞

0

(−j2𝜋𝜈𝑡)𝒰(𝒓, 𝜈𝑡) exp(−j2𝜋𝜈𝑡𝑡) d𝜈𝑡, (2.1.27)

Eq. (2.1.26) can be expressed as

𝐸(𝒓0, 𝑡) =

∫∫
𝒫

cos(𝒏, 𝒓′ − 𝒓0)

2𝜋𝑐∣𝒓′ − 𝒓0∣
∂

∂𝑡
𝐸

(
𝒓′, 𝑡− ∣𝒓

′ − 𝒓0∣
𝑐

)
d𝒓′. (2.1.28)

If the field only has frequency components close to the central frequency, it is

narrowband, or quasi-monochromatic, and can be expressed as

𝐸(𝒓, 𝑡) = 𝑈(𝒓, 𝑡) exp(−j2𝜋𝜈𝑡𝑡), (2.1.29)

where 𝜈𝑡 is the central frequency of 𝐸. Since the frequency components of 𝑈 are much

lower than 𝜈𝑡, the time derivative of 𝐸 is well approximated by

∂

∂𝑡
𝐸(𝒓, 𝑡) ≃ −j2𝜋𝜈𝑡𝑈(𝒓, 𝑡) exp(−j2𝜋𝜈𝑡𝑡). (2.1.30)

Inserting this into Eq. (2.1.28) produces

𝑈(𝒓0, 𝑡) =
1

j�̄�

∫∫
𝒫

𝑈

(
𝒓′, 𝑡− ∣𝒓

′ − 𝒓0∣
𝑐

)
exp(j𝑘∣𝒓′ − 𝒓0∣)
∣𝒓′ − 𝒓0∣ cos(𝒏, 𝒓′ − 𝒓0) d𝒓

′. (2.1.31)

The only differences between this expression and Eq. (2.1.23) come from replacing 𝑘
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and 𝜆 with 𝑘 and �̄�, and time shifting field at 𝒫. Similar substitutions should change
any expression for monochromatic waves into one for a narrowband field.

2.1.4 Fresnel Approximation.

Using Eq. (2.1.23) it is possible to find the field in an observation plane given

the field in a parallel source plane a distance 𝐿 away. While the following derivation

assumes a monochromatic field, it can be extended to narrowband fields by making

the same substitutions mentioned at the end of the previous section. Aligning the

coordinate axis such that the origin lies in the source plane and the 𝑧-axis is per-

pendicular to the two planes, and using the relation cos(𝒏, 𝒓′ − 𝒓0) = 𝐿/∣𝒓′ − 𝒓0∣,
Eq. (2.1.23) can be written as

𝑈(𝑥, 𝑦) =
𝐿

j𝜆

∫∫
𝑈(𝑢, 𝑣)

exp
[
j𝑘
√
𝐿2 + (𝑥− 𝑢)2 + (𝑦 − 𝑣)2

]
𝐿2 + (𝑥− 𝑢)2 + (𝑦 − 𝑣)2

d𝑢 d𝑣. (2.1.32)

Assuming that 𝐿 ≫ 𝑥 − 𝑢 and 𝐿 ≫ 𝑦 − 𝑣 wherever the field is non-negligible, the

radical in the exponential can be expanded in a Taylor series approximation to

√
𝐿2 + (𝑥− 𝑢)2 + (𝑦 − 𝑣)2 ∼= 𝐿

[
1 +

1

2

(
𝑥− 𝑢
𝐿

)2
+
1

2

(
𝑦 − 𝑣
𝐿

)2]
. (2.1.33)

This assumption also allows for dropping all but the 𝐿2 term in the denominator under

the exponential [39]. These changes comprise the Fresnel approximation, which can

be expressed as

𝑈(𝑥, 𝑦) =
exp(j𝑘𝐿)

j𝜆𝐿

∫∫
𝑈(𝑢, 𝑣) exp

{
j𝑘

2𝐿

[
(𝑥− 𝑢)2 + (𝑦 − 𝑣)2]} d𝑢 d𝑣. (2.1.34)

Since this expression is essentially a convolution of 𝑈(𝑢, 𝑣) and exp
[
j𝑘
2𝐿
(𝑢2 + 𝑣2)

]
, it

can be efficiently evaluated using Fourier transforms, and forms the basis of Fourier

16



optics.

One particular example where this relation is very useful is when a thin spherical

lens is used to focus incident light. Since the lens only affects the phase of the

impinging light, the field immediately behind the lens can be expressed as

𝑈(𝑢, 𝑣) = 𝑈 ′(𝑢, 𝑣) exp

[
− j𝜋
𝜆𝑓

(
𝑢2 + 𝑣2

)]
, (2.1.35)

where 𝑈 ′(𝑢, 𝑣) is the field immediately in front of the lens and 𝑓 is the lens focal

length [39]. Inserting this into Eq. (2.1.34) and using 𝐿 = 𝑓 gives

𝑈(𝑥, 𝑦) =

exp
[
j𝑘𝑓 + j𝑘

2𝑓
(𝑥2 + 𝑦2)

]
j𝜆𝑓

∫∫
𝒫

𝑈 ′(𝑢, 𝑣)𝑃 (𝑢, 𝑣) exp

[
− j2𝜋
𝜆𝑓

(𝑥𝑢+ 𝑦𝑣)

]
d𝑢 d𝑣, (2.1.36)

where 𝑃 defines the aperture pupil of the lens (equals 1 within the lens and 0 outside

the lens). This expression states that there is a direct Fourier transform relationship

between the field incident on the lens and the field in the focal plane. This relation is

not exact due to the quadratic phase factor, but this phase factor can be eliminated

by simply adding another lens of focal length 𝑓 at the focal plane.

2.2 Coherence Theory

The fields of interest in this research are random, so statistical means are needed

to analyze them. Of primary concern is coherence which describes the degree to which

one point of the field is related to any other point of the field in time or space. A field

is coherent when there is a fixed relation between one point and all other points of

the field. A field is then incoherent when there is no fixed relation between one point

and any other points. Fields that are partially coherent fall somewhere between these
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two extremes. The primary method to describe the coherence of a field is the mutual

coherence function (MCF) defined as

Γ(𝒓1, 𝒓2; 𝑡1, 𝑡2) = ⟨𝑈(𝒓1, 𝑡1)𝑈∗(𝒓2, 𝑡2)⟩ , (2.2.1)

where 𝒓1 and 𝒓2 are three-dimensional spatial coordinate vectors, 𝑡1 and 𝑡2 are tempo-

ral coordinates, and ⟨⋅⟩ represents ensemble averaging [38, 57]. This research always
assumes the fields under consideration are at the very least wide-sense stationary.

This means the average field has no time dependence and the MCF depends only on

𝜏 = 𝑡2 − 𝑡1 and not the actual values of 𝑡1 and 𝑡2.

While the MCF describes the second-order statistics of the field as a whole, it is

often convenient to normalize it such that

𝛾(𝒓1, 𝒓2; 𝜏) =
Γ(𝒓1, 𝒓2; 𝜏)

[Γ(𝒓1, 𝒓1; 0)]
1/2 [Γ(𝒓2, 𝒓2; 0)]

1/2
. (2.2.2)

This new quantity is known as the complex degree of coherence and describes the

degree to which one point of the field is correlated to another point in time and/or

space [38, 57]. If two different points in space or time are directly related, then the

magnitude of 𝛾 is 1. However, if there is no correlation between the points, its

value would be zero. For partial correlation between the two points, the magnitude

falls somewhere between 0 and 1. The phase of 𝛾 simply defines the average phase

difference between the two points.

When the random field can be considered narrowband, the Fresnel approximation

of Eq. (2.1.34) can be used to derive an expression for the propagation of the MCF.

Making the appropriate changes to Eq. (2.1.34) then inserting it into Eq. (2.2.1)
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produces

Γ(𝝆1,𝝆2; 𝜏) =

〈
1

(�̄�𝐿)2

∫∫
𝒫

∫∫
𝒫

𝑈 (𝝆′
1, 𝑡− 𝐿/𝑐)𝑈∗ (𝝆′

2, 𝑡+ 𝜏 − 𝐿/𝑐)

× exp
[
j𝑘

2𝐿

(
∣𝝆1 − 𝝆′

1∣2 − ∣𝝆2 − 𝝆′
2∣2
)]

d2𝝆′
1 d
2𝝆′
2

〉

=
1

(�̄�𝐿)2

∫∫
𝒫

∫∫
𝒫

Γ(𝝆′
1,𝝆

′
2; 𝜏)

× exp
[
j𝑘

2𝐿

(
∣𝝆1 − 𝝆′

1∣2 − ∣𝝆2 − 𝝆′
2∣2
)]

d2𝝆′
1 d
2𝝆′
2, (2.2.3)

where 𝝆′ is a two-dimensional coordinate vector in the source plane while 𝝆 is a

two-dimensional coordinate vector in the receiver plane.

Occasionally, the MCF is insufficient to describe the necessary statistics of the

field. For example, describing the spatial and/or temporal correlations of the intensity

of the field requires knowledge of the fourth-order statistics of the field. This is found

with the fourth-order coherence function defined as

Γ(𝝆1,𝝆2,𝝆3,𝝆4; 𝜏1, 𝜏2, 𝜏3) = ⟨𝑈(𝝆1, 𝑡1)𝑈∗(𝝆2, 𝑡2)𝑈(𝝆3, 𝑡3)𝑈
∗(𝝆4, 𝑡4)⟩ , (2.2.4)

where 𝜏1 = 𝑡2 − 𝑡1, 𝜏2 = 𝑡3 − 𝑡1, and 𝜏3 = 𝑡4 − 𝑡1. While the fourth-order coherence

function may be difficult to calculate in general, there is one case where is can be

calculated quite simply. That is when the random field is a circular complex Gaussian

random process. This is where the real and imaginary parts of every point in the field

are zero mean, independent, identically distributed Gaussian random variables. In

this case, the coherence function of any even order can be found using the complex

Gaussian moment theorem which is given by

〈
𝑋1 ⋅ ⋅ ⋅𝑋𝑘𝑋

∗
𝑘+1 ⋅ ⋅ ⋅𝑋∗

2𝑘

〉
=
∑〈

𝑋1𝑋
∗
𝑛1

〉 ⋅ ⋅ ⋅ 〈𝑋𝑘𝑋
∗
𝑛𝑘

〉
, (2.2.5)
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where 𝑛1, ⋅ ⋅ ⋅ , 𝑛𝑘 is a permutation of 𝑘 + 1, ⋅ ⋅ ⋅ , 2𝑘, and the sum is over all possible

permutations [38]. As such, the fourth-order coherence function of a circular complex

Gaussian random field can be expressed in terms of its MCF as

Γ(𝝆1,𝝆2,𝝆3,𝝆4; 𝜏1, 𝜏2, 𝜏3) =

Γ(𝝆1,𝝆2; 𝜏1)Γ(𝝆3,𝝆4; 𝜏3 − 𝜏2) + Γ(𝝆1,𝝆4; 𝜏3)Γ(𝝆3,𝝆2; 𝜏2 − 𝜏1). (2.2.6)

2.3 Gaussian Schell-Model (GSM) Beams

There is a special class of random fields where the magnitude of the complex

degree of coherence given by Eq. (2.2.2) depends only on the separation difference

𝝆1−𝝆2 and not the actual values of 𝝆1 and 𝝆2. These fields are known as Schell-model

fields [57, 78]. Of particular interest is when the spatial component of the MCF of a

Schell-model field within a two-dimensional plane can be expressed as

Γ(𝝆1,𝝆2) = ⟨𝑈(𝝆1)⟩ ⟨𝑈∗(𝝆2)⟩𝜇(𝝆1 − 𝝆2), (2.3.1)

where 𝜇 is the spatial coherence function of the field. If both ⟨𝑈⟩ and 𝜇 can be

expressed in terms of Gaussian functions, the spatial portion of the MCF can be

expressed as

Γ(𝝆1,𝝆2) = Γ(0, 0) exp

[
−∣𝝆1∣

2 + ∣𝝆2∣2
𝑤2𝑔

− ∣𝝆1 − 𝝆2∣2
𝜌2𝑔

− j𝑘

2𝑅𝑔

(∣𝝆1∣2 − ∣𝝆2∣2)
]
.

(2.3.2)

where 𝑤𝑔 is the mean field radius, 𝜌𝑔 is the field coherence radius, and 𝑅𝑔 is the field

radius of curvature. This relation defines a Gaussian Schell-model (GSM) field, and

when used as a source it produces GSM beams.

The three parameters 𝑤𝑔, 𝜌𝑔, and 𝑅𝑔 completely define the second-order statistics
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of a GSM field. The mean field radius 𝑤𝑔 gives the size of the overall field. It is

defined as the distance from the field center where the magnitude of the mean field

falls to e−1× the value at the field center. The coherence radius 𝜌𝑔 is defined as the
separation distance between two points where the magnitude of the complex degree

of coherence is e−1. Within this separation distance, the field can be considered to be

coherent. The field radius of curvature 𝑅𝑔 defines surfaces of constant average phase.

When it is positive the field is converging, when it is negative the field is diverging,

and when it is infinite the field is collimated.

GSM beams have been extensively studied in the literature due to its simple form,

its ability to represent a variety of fields of practical interest, and since it often gives

tractable results [24,26,37,47,49,53,68,80,88,97]. For example, it reduces to a point

source when 𝑤0 → 0, or a plane wave as 𝑤0 → ∞. It can also be used to model a
completely coherent Gaussian beam, such as a laser, when 𝜌𝑔 →∞, or a completely
incoherent Gaussian source when 𝜌𝑔 ∼ 𝜆. These properties make it an ideal source

model for this research.

2.4 Atmospheric Turbulence Theory

To fully describe the turbulent flow of the atmosphere would require the use of

the Navier-Stokes equations. However, since they are non-linear partial differential

equations, they are very difficult to work with. Instead, Russian mathematician

Andrei Kolmogorov used statistical analysis to describe the turbulent nature of fluid

flow [48]. Using dimensional analysis, and assuming the statistical nature of the

turbulence is homogeneous and isotropic, he deduced that within the inertial subrange

of turbulent flow (for distances smaller than the largest turbulence cells, or eddies,

of size 𝐿0 and larger than the smallest eddies of size 𝑙0) the longitudinal structure
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function of wind velocity can be expressed as

𝒟𝑣(𝑟) = ⟨(𝑣1 − 𝑣2)2⟩ = 𝐶2𝑣𝑟
2/3, 𝑙0 ≪ 𝑟 ≪ 𝐿0, (2.4.1)

where 𝑣1 and 𝑣2 are velocity components separated by a distance 𝑟, and 𝐶
2
𝑣 is known

as the velocity structure constant (in units of m4/3/s2) which can be used as a measure

of the strength of the turbulence.

After determining the structure function of the turbulence, the spatial power

spectral density (PSD) of the turbulence can be found by using the relation

Φ(𝜅) =
1

4𝜋2𝜅2

∫ ∞

0

sin 𝜅𝑟

𝜅𝑟

𝑑

𝑑𝑟

[
𝑟2

𝑑

𝑑𝑟
𝒟(𝑟)

]
d𝑟, (2.4.2)

where 𝜅 is a scalar spatial frequency (in units of rad/m) [2]. Entering Eq. (2.4.1) into

Eq. (2.4.2) results in

Φ𝑣(𝜅) = 0.033𝐶2𝑣𝜅
−11/3, 1/𝐿0 ≪ 𝜅≪ 1/𝑙0, (2.4.3)

and is known as the Kolmogorov power-law spectrum.

The same type of analysis on fluctuations in the index of refraction of the atmo-

sphere, based on temperature fluctuations as studied independently by Obukhov [61]

and Corrsin [20], produces similar results [82]. As with velocity fluctuations, the

structure function and spatial PSD of the index of refraction can be expressed as

𝒟𝑛(𝑟) = 𝐶2𝑛𝑟
2/3, 𝑙0 ≪ 𝑟 ≪ 𝐿0, (2.4.4)

Φ𝑛(𝜅) = 0.033𝐶2𝑛𝜅
−11/3, 1/𝐿0 ≪ 𝜅≪ 1/𝑙0, (2.4.5)

where 𝐶2𝑛 is the index of refraction structure constant (in units of m
−2/3). While there

are models of the index of refraction structure function and spatial PSD which extend
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beyond the inertial subrange, they are often only for mathematical convenience and

only accurately model the correct behavior within the inertial subrange [2]. For this

reason the Kolmogorov spectrum was used in this research.

There are two main approaches to dealing with atmospheric turbulence. The

first is to assume the index-of-refraction fluctuations only cause the field to deviate

slightly from how it would behave in the absence of the fluctuations. This is known

as weak turbulence, and it is appropriate to use perturbation theory to describe these

deviations. For those cases where the deviations become large, known as strong

turbulence, perturbation theory is no longer appropriate, and alternative means must

be used. Both of these approaches are summarized below.

2.4.1 Weak Turbulence.

As is shown in Sec. 2.1.1, the governing stochastic equation that models the prop-

agation of scalar electromagnetic waves through a linear, isotropic, nondispersive,

and nonmagnetic medium is the Helmholtz equation given by Eq. (2.1.16). While it

was originally assumed the index-of-refection 𝑛 was constant, it becomes a function

of position with atmospheric turbulence. Since 𝑛 consists of random perturbations

about a nominal value, it can be expressed as

𝑛 = 𝑛0 + 𝑛1 (2.4.6)

where 𝑛0 = ⟨𝑛⟩ ∼= 1 so ⟨𝑛1⟩ = 0. Since 𝑛1 ≪ 1, 𝑛2 can be approximated with

𝑛2 ∼= 1 + 2𝑛1, (2.4.7)
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which allows Eq. (2.1.16) to be expressed as

[∇2 + 𝑘2(1 + 2𝑛1)
]
𝑈 = 0. (2.4.8)

Exact solutions to this equation have not been computed [2], but low-order statistical

moments of the field can be computed by applying perturbation theory. This is

appropriate so long as the effect of the 𝑛1 fluctuations is small compared to vacuum

propagation.

2.4.1.1 Rytov Theory.

One common perturbation method, known as the Born approximation, writes the

perturbations in the form 𝑈 = 𝑈0 + 𝜖𝑈1 + 𝜖2𝑈2 + ⋅ ⋅ ⋅ and then equates terms of
the same order of 𝜖. However, the statistics produced by this method have been

shown to be valid only for very short propagation paths [2]. An alternate method,

known as the Rytov approximation, writes the perturbations in the form of 𝑈 =

exp (𝜓0 + 𝜖𝜓1 + 𝜖2𝜓2 + ⋅ ⋅ ⋅ ). This method gives better agreement with experiment for
long propagation paths, and is the basis for modeling electromagnetic propagation

through weak atmospheric turbulence [2].

Applying the Rytov approximation to Eq. (2.4.8) and equating terms of similar

order up to the second order produces

∇2𝜓0 +∇𝜓0 ⋅ ∇𝜓0 = −𝑘2, (2.4.9)

∇2𝜓1 + 2∇𝜓0 ⋅ ∇𝜓1 = −2𝑘2𝑛1, (2.4.10)

∇2𝜓2 + 2∇𝜓0 ⋅ ∇𝜓2 = −(∇𝜓1)2. (2.4.11)

The first equation is equivalent to the Helmholtz equation and describes electromag-

netic propagation through vacuum. The solution to the other two equations can be
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found using Green’s functions and shown to be

𝜓1(r) =
𝑘2

2𝜋𝑈0(r)

∫∫∫
𝑈0(r

′)𝑛1(r
′)
exp (j𝑘∣r− r′∣)
∣r− r′∣ dr′, (2.4.12)

𝜓2(𝒓) =
1

4𝜋𝑈0(r)

∫∫∫
𝑈0(r

′)[∇𝜓1(r′)]2 exp (j𝑘∣r− r′∣)
∣r− r′∣ dr′, (2.4.13)

where 𝑈0 = exp(𝜓0) [77, 82]. Once a solution is found for 𝜓1 it can be used to find a

solution for 𝜓2, and so forth.

As the only randomness in 𝜓1 comes from 𝑛1, Eq. (2.4.12) expresses 𝜓1 as the

superposition of independent random contributions from throughout the medium.

Because an optical field encounters many random fluctuations through its propaga-

tion path, the central limit theorem implies 𝜓1 should exhibit Gaussian statistics.

This allows for estimating some statistical quantities of the field without needing to

explicitly evaluate the integral.

2.4.1.2 Optical Transfer Function.

One such quantity is the optical transfer function (OTF). The OTF is defined as

the normalized Fourier transform of the point spread function (PSF) of an incoherent

imaging system. The PSF is simply the image of a point source made by the optical

system. The OTF is then expressed mathematically as

ℋ(𝜈𝑥, 𝜈𝑦) = ℱ {∣ℎ∣2}∫∫∞

−∞
∣ℎ(𝑥, 𝑦)∣2 d𝑥 d𝑦 , (2.4.14)

where ℋ(𝜈𝑥, 𝜈𝑦) is the OTF, ℱ{⋅} is the Fourier transform operator, and ℎ(𝑥, 𝑦) is

the field in the image plane for a point source [39].

As shown in Sec. 2.1.4, there is a Fourier transform relationship between the the

system’s exit-pupil and image-plane fields. Assuming the system is diffraction limited,

25



this relation can be expressed as

ℎ(𝑥, 𝑦) =
𝑎

𝜆𝑓

∫∫ ∞

−∞

𝑃 (𝑢, 𝑣) exp

[
−j 2𝜋

𝜆𝑓
(𝑥𝑢+ 𝑦𝑣)

]
d𝑢 d𝑣,

∝ ℱ {𝑃 (𝑢, 𝑣)} ∣𝜈𝑢=𝑥/𝜆𝑓,𝜈𝑣=𝑦/𝜆𝑓 , (2.4.15)

where 𝑎 is a proportionality constant, 𝜆 is the wavelength of the light, 𝑓 is the distance

between the exit pupil and focal plane, 𝑃 is the system’s pupil function (1 within the

pupil and 0 outside the pupil), while 𝑥 and 𝑦 are the image coordinates, 𝑢 and 𝑣 are

the pupil coordinates, and 𝜈𝑢 and 𝜈𝑣 are the Fourier transform coordinates. Taking

the Fourier transform of Eq. (2.4.15) and assuming the pupil function is even in each

coordinate direction, gives

𝐻(𝜈𝑥, 𝜈𝑦) ∝ 𝑃 (𝜆𝑓𝜈𝑥, 𝜆𝑓𝜈𝑦), (2.4.16)

where 𝐻 = ℱ{ℎ}. This relationship, the autocorrelation and Parseval’s theorems of
Fourier transforms, and a simple change of variables allows us to express the OTF in

terms of the pupil function with

ℋ(𝜈𝑥, 𝜈𝑦) =
∫∫∞

−∞
𝑃 (𝑢, 𝑣)𝑃 ∗(𝑢− 𝜆𝑓𝜈𝑥, 𝑣 − 𝜆𝑓𝜈𝑦) d𝑢 d𝑣∫∫∞

−∞
∣𝑃 (𝑢, 𝑣)∣2 d𝑢 d𝑣 . (2.4.17)

In the case of optical aberrations due to atmospheric turbulence, the pupil function

can be modified by multiplying it by the aberrated field at the pupil

𝑃 ′(𝑢, 𝑣) = 𝑃 (𝑢, 𝑣)𝑈(𝑢, 𝑣). (2.4.18)

With this adjustment Eq. (2.4.17) can be expressed as

26



ℋ(𝜈𝑥, 𝜈𝑦) =∫∫∞

−∞
𝑃 (𝑢, 𝑣)𝑃 ∗(𝑢− 𝜆𝑓𝜈𝑥, 𝑣 − 𝜆𝑓𝜈𝑦)𝑈(𝑢, 𝑣)𝑈

∗(𝑢− 𝜆𝑓𝜈𝑥, 𝑣 − 𝜆𝑓𝜈𝑦) d𝑢 d𝑣∫∫∞

−∞
∣𝑃 (𝑢, 𝑣)∣2∣𝑈(𝑢, 𝑣)∣2 d𝑢 d𝑣 . (2.4.19)

Since the field aberrations are not fixed, the question becomes how to describe the

average OTF. Taking the expectation of both sides of Eq. (2.4.19) results in the

expected value of a ratio of correlated random variables which can be difficult to

work with. Instead, the average OTF is defined as

ℋ(𝜈𝑥, 𝜈𝑦) = ⟨numerator of the OTF⟩⟨denominator of the OTF⟩ . (2.4.20)

The only random part of Eq. (2.4.19) is the field 𝑈 , and assuming its spatial statistics

are wide-sense stationary, its expectation can be moved outside the integrals. The

average OTF can then be expressed as a product of the diffraction limited OTF given

by Eq. (2.4.17) and the average OTF of the atmosphere given by

ℋ𝑎𝑡𝑚(𝜈𝑥, 𝜈𝑦) = ⟨𝑈(𝑢, 𝑣)𝑈
∗(𝑢− 𝜆𝑓𝜈𝑥, 𝑣 − 𝜆𝑓𝜈𝑦)⟩
⟨∣𝑈(𝑢, 𝑣)∣2⟩ . (2.4.21)

This is simply the normalized autocorrelation of the field. The unaberrated portion

of the field 𝑈0 can be moved outside the expectation operator of both the numerator

and denominator where they divide out. This just leaves the Rytov perturbation

𝑈1 = exp(𝜓1). Expressing 𝜓1 in complex notation gives

𝜓1 = 𝜒+ 𝑗𝑆, (2.4.22)

where 𝜒 is known as the log-amplitude aberration and 𝑆 is the phase aberration. The
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numerator of Eq. (2.4.21) can now be expressed as

Γ(Δ𝑢,Δ𝑣) = ⟨exp [(𝜒1 + 𝜒2) + j(𝑆1 − 𝑆2)]⟩, (2.4.23)

where Γ is the spatial autocorrelation function, also known as the mutual coherence

function (MCF), while the subscripts of 𝜒 and 𝑆 refer to two points separated by Δ𝑢

and Δ𝑣. While there is no particular reason to believe 𝜒 and 𝑆 are independent, since

𝑛1 was assumed to be homogeneous and isotropic, 𝜒 and 𝑆 must also be homogeneous

and isotropic. This implies that

⟨𝜒1𝑆1⟩ = ⟨𝜒2𝑆2⟩, (2.4.24)

⟨𝜒1𝑆2⟩ = ⟨𝜒2𝑆1⟩. (2.4.25)

It is thus plain to see that

⟨(𝜒1 + 𝜒2)(𝑆1 − 𝑆2)⟩ = ⟨𝜒1𝑆1⟩ − ⟨𝜒2𝑆2⟩ − ⟨𝜒1𝑆2⟩+ ⟨𝜒2𝑆1⟩ = 0, (2.4.26)

which means (𝜒1+𝜒2) and (𝑆1−𝑆2) are uncorrelated. Since they are both Gaussian,
they must also be independent and thus their expectations are separable.

The expectation of an exponent of a Gaussian random variable can easily by found

by using its characteristic equation

M𝐺(𝜔) = ⟨exp(j𝜔𝑔)⟩

= exp

(
j𝜔𝑔 − 𝜔2𝜎2

2

)
, (2.4.27)

where 𝑔 and 𝜎2 are respectively the mean and variance of the Gaussian random

variable 𝑔 [38]. The phase aberration difference has a zero mean and its variance is
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equal to the phase aberration structure function 𝒟𝑆 [see Eq. (2.4.1)], so using 𝜔 = 1

yields

⟨exp [j(𝑆1 − 𝑆2)]⟩ = exp

(
−1
2
𝒟𝑆
)
. (2.4.28)

As for the log-amplitude portion, letting �̄� be the log-amplitude mean, and 𝜎2𝜒 be

the log-amplitude variance, using 𝜔 = −j yields

⟨exp(𝜒1 + 𝜒2)⟩ = exp

{
⟨𝜒1 + 𝜒2⟩+ 1

2

[⟨(𝜒1 + 𝜒2)
2⟩ − ⟨𝜒1 + 𝜒2⟩2

]}

= exp

[
2�̄�+

1

2

(⟨𝜒21⟩+ ⟨𝜒22⟩+ 2⟨𝜒1𝜒2⟩ − 4�̄�2)
]

= exp
(
2�̄�+ ⟨𝜒2⟩+ ⟨𝜒1𝜒2⟩ − 2�̄�2

)
. (2.4.29)

The denominator of Eq. (2.4.21) can also be expressed as

Γ(0, 0) = ⟨exp(2𝜒)⟩

= exp(2�̄�+ 2𝜎2𝜒)

= exp
(
2�̄�+ 2⟨𝜒2⟩ − 2�̄�2) . (2.4.30)

Dividing Eq. (2.4.29) by Eq. (2.4.30) gives

⟨exp(𝜒1 + 𝜒2)⟩
⟨exp(2𝜒)⟩ = exp

(⟨𝜒1𝜒2⟩ − ⟨𝜒2⟩)
= exp

[
−1
2

(⟨𝜒21⟩+ ⟨𝜒22⟩ − 2⟨𝜒1𝜒2⟩)
]

= exp

[
−1
2
⟨(𝜒1 − 𝜒2)

2⟩
]

= exp

(
−1
2
𝒟𝜒
)
, (2.4.31)

using the definition of the log-amplitude structure function. Defining the wave struc-

ture function (WSF) as the sum of the log-amplitude and phase structure functions
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produces

𝒟 = 𝒟𝜒 +𝒟𝑆, (2.4.32)

so that Eq. (2.4.21) can be expressed as

ℋ𝑎𝑡𝑚(𝜈𝑥, 𝜈𝑦) = exp

[
−1
2
𝒟(𝜆𝑓𝜈𝑥, 𝜆𝑓𝜈𝑦)

]
. (2.4.33)

Further analysis requires an expression for the WSF.

2.4.1.3 Wave Structure Function.

Using cylindrical coordinates, the WSF of the field in the pupil plane for a point

source a distance 𝐿 away can be expressed as

𝒟(𝜌, 𝐿) = ⟨∣𝜓1(𝝆1, 𝐿)− 𝜓1(𝝆2, 𝐿)∣2⟩

= ⟨∣𝜓1(𝝆1, 𝐿)∣2 + ∣𝜓1(𝝆2, 𝐿)∣2 − 2Re[𝜓1(𝝆1, 𝐿)𝜓∗
1(𝝆2, 𝐿)]⟩, (2.4.34)

where 𝜌 = ∣𝝆1−𝝆2∣ and Re(⋅) is the real operator. It is a simple matter to show that

this can be reduced to the sum of the log-amplitude and phase structure functions.

All that is needed is to use Eq. (2.4.12) to find ⟨𝜓(𝝆1, 𝐿)𝜓∗(𝝆2, 𝐿)⟩ for a point source.
This derivation is quite involved and is found in many references (see [2, 38, 77]), so

only the final result is provided here as

⟨𝜓1(𝝆1, 𝐿)𝜓∗
1(𝝆2, 𝐿)⟩ = 4𝜋2𝑘2

∫ 𝐿

0

∫ ∞

0

𝜅Φ𝑛(𝜅, 𝑧)𝐽0(𝜅𝜌𝑧/𝐿) d𝜅 d𝑧, (2.4.35)

where 𝐽0 is the zero-order Bessel function of the first kind. Substituting this into

Eq. (2.4.34) gives

𝒟(𝜌, 𝐿) = 8𝜋2𝑘2
∫ 𝐿

0

∫ ∞

0

𝜅Φ𝑛(𝜅, 𝑧)[1 − 𝐽0(𝜅𝜌𝑧/𝐿)] d𝜅 d𝑧. (2.4.36)
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Using the Kolmogorov PSD given in Eq. (2.4.5) and allowing 𝐶2𝑛 to slowly vary over

the propagation distance, the WSF can be explicitly written as

𝒟(𝜌, 𝐿) = 2.914𝑘2𝜌5/3
∫ 𝐿

0

𝐶2𝑛(𝑧)(𝑧/𝐿)
5/3 d𝑧, (2.4.37)

or for constant 𝐶2𝑛

𝒟(𝜌, 𝐿) = 1.093𝑘2𝐶2𝑛𝐿𝜌
5/3. (2.4.38)

The average OTF of the atmosphere can now be explicitly written for constant 𝐶2𝑛 as

ℋ𝑎𝑡𝑚(𝜈𝜌) = exp
[−11.7𝑘1/3𝐶2𝑛𝐿(𝑓𝜈𝜌)5/3] , (2.4.39)

where 𝜈𝜌 = (𝜈2𝑥 + 𝜈2𝑦)
1/2.

2.4.1.4 Coherence Length (𝑟0).

An additional measure for the performance of an optical system is its resolution.

While there are different ways to define a system’s resolution, a useful one for this

analysis is the integral of the average OTF [29]

R =

∫∫ ∞

−∞

ℋ(𝜈𝑥, 𝜈𝑦) d𝜈𝑥 d𝜈𝑦. (2.4.40)

If 𝜆, 𝑓 , 𝐶2𝑛, and 𝐿 are kept fixed, R becomes a function of the system aperture

diameter 𝐷. For small 𝐷, it increases with the square of 𝐷 as would be expected,

but at a certain point the curve levels off to a constant value. These two asymptotes

cross at a point called the atmospheric coherence length 𝑟0 which is given by

𝑟0 =

[
0.423𝑘2

∫ 𝐿

0

𝐶2𝑛(𝑧)(𝑧/𝐿)
5/3 d𝑧

]−3/5
, (2.4.41)
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for a point source in the case 𝐶2𝑛 changes over the path length, or

𝑟0 = (0.159𝑘2𝐶2𝑛𝐿)
−3/5, (2.4.42)

for the case of constant 𝐶2𝑛. This is essentially the length over which the atmosphere

has a negligible effect on high-order wavefront aberrations. It is a useful parameter

since many of the quantities discussed above can be expressed in terms of 𝑟0. For

instance, the WSF becomes

𝒟(𝜌) = 6.88

(
𝜌

𝑟0

)5/3
, (2.4.43)

which makes the average OTF degradation due to the atmosphere

ℋ𝑎𝑡𝑚(𝜈𝜌) = exp

[
−3.44

(
𝜆𝑓𝜈𝜌
𝑟0

)5/3]
. (2.4.44)

2.4.1.5 Isoplanatic angle (𝜃0).

While 𝑟0 expresses the coherence width of the atmosphere in terms of length,

often it is better to express it in terms of angle. For instance, at what angular

extent do two different point sources’ phase perturbations become uncorrelated with

each other? This is known as anisoplanatism, with the maximum angular extent of

correlation being called the isoplanatic angle 𝜃0 [30]. The WSF can be expressed in

terms of angular extent 𝜃 by simply replacing 𝜌 in Eq. (2.4.37) with 𝐿𝜃 giving

𝒟(𝜃) = 2.914𝑘2𝜃5/3
∫ 𝐿

0

𝐶2𝑛(𝑧)𝑧
5/3𝑑𝑧. (2.4.45)
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𝜃0 is then defined as the angle where 𝒟(𝜃) = 1, or

𝜃0 =

[
2.914𝑘2

∫ 𝐿

0

𝐶2𝑛(𝑧)𝑧
5/3𝑑𝑧

]−3/5
, (2.4.46)

for a variable 𝐶2𝑛 and

𝜃0 =
(
1.093𝑘2𝐶2𝑛𝐿

8/3
)−3/5

, (2.4.47)

for a constant 𝐶2𝑛. By comparing Eq. (2.4.46) with Eq. (2.4.41) it can be readily seen

that for a point source

𝜃0 = 0.314
𝑟0
𝐿
. (2.4.48)

It should be noted, that 𝜃0 is defined as the offset angle whereby performance is

degraded by e−1 in the limit of an infinite aperture [30]. For telescopes with finite

apertures, the true angular extent of the isoplanatic patch may be several times

𝜃0 [18].

2.4.1.6 Rytov Number (ℛ).

Another useful statistical quantity is the log-amplitude variance 𝜎2𝜒. As explained

earlier, Rytov theory predicts a Gaussian distribution for the log-amplitude pertur-

bation 𝜒, so all its statistics should be described by its mean and variance. From

Eq. (2.4.12) it can be seen that that ⟨𝜓1⟩ = 0, so ⟨𝜒⟩ = 0 as well. The log-amplitude

variance can be calculated by using the relationship

𝜒 =
1

2
(𝜓1 + 𝜓∗

1) . (2.4.49)
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This then implies

𝜎2𝜒 = ⟨𝜒2⟩

=
1

2
Re
(⟨∣𝜓1∣2⟩+ ⟨𝜓21⟩) . (2.4.50)

⟨∣𝜓1∣2⟩ is found by using Eq. (2.4.35), but ⟨𝜓21⟩ still needs to be calculated. As with
Eq. (2.4.35), this derivation is quite involved (see [2]) so only the final result is given

here for a point source as

⟨𝜓21⟩ = −4𝜋𝑘2
∫ 𝐿

0

∫ ∞

0

𝜅Φ𝑛(𝜅, 𝑧) exp

[
−𝑗𝜅

2𝑧

𝑘

(
1− 𝑧

𝐿

)]
d𝜅 d𝑧. (2.4.51)

Using Eqs. (2.4.35) and (2.4.51) with Eq. (2.4.50) gives

𝜎2𝜒 = 2𝜋2𝑘2
∫ 𝐿

0

∫ ∞

0

𝜅Φ𝑛(𝜅, 𝑧)

[
1− cos 𝜅

2𝑧(1 − 𝑧/𝐿)

𝑘

]
d𝜅 d𝑧. (2.4.52)

With the Kolmogorov PSD from Eq. (2.4.5), this reduces to

𝜎2𝜒 = 0.5631𝑘7/6
∫ 𝐿

0

𝐶2𝑛(𝑧)𝑧
5/6(1− 𝑧/𝐿)5/6 d𝑧. (2.4.53)

If 𝐶2𝑛 is constant along the path, it can be further reduced to

𝜎2𝜒 = 0.1242𝑘7/6𝐶2𝑛𝐿
11/6. (2.4.54)

This shows that for a given wavelength and 𝐶2𝑛, the log-amplitude variance in-

creases with nearly the square of the distance propagated. While there is no limit to

this growth given by Eq. (2.4.54), experiments show that it eventually saturates, and

even then decreases asymptotically to a constant value [2]. The reason for this failure

to accurately predict the correct statistics has to do with the assumptions that went
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into the Rytov approximation. Perturbation theory assumes that each additional

perturbation is much smaller then the previous one. This assumption is generally

only valid when 𝜎2𝜒 < 0.35 [77]. As a result, the regime where Eq. (2.4.54) holds is

known as weak turbulence and can be described by Rytov theory, while the regime

where it fails is known as medium to strong turbulence and requires a different theory

to accurately describe the log-amplitude statistics.

Despite this shortcoming, Eq. (2.4.54) is still useful as a measure of the strength

of turbulence. As a result is it designated as the point source Rytov number ℛ to

differentiate it from the actual log-amplitude variance of a field [32].

2.4.1.7 Scintillation Index (�̃�2𝐼).

Since irradiance is what is actually measured by a detector, fluctuations in the

log-amplitude of a field are measured as fluctuations of the irradiance and are known

as scintillation. The scintillation index quantifies scintillation and is defined as the

normalized variance of the irradiance

�̃�2𝐼 =
𝜎2𝐼
⟨𝐼⟩2

=
⟨𝐼2⟩
⟨𝐼⟩2 − 1. (2.4.55)

Since 𝐼 = ∣𝑈 ∣2, the irradiance and log-amplitude are related by

𝐼 = 𝐴20 exp(2𝜒), (2.4.56)

where 𝐴0 = ∣𝑈0∣. By using the same techniques as in Sec. 2.4.1.2 for the average
OTF, it can be shown that �̃�2𝐼 and 𝜎2𝜒 are related by

�̃�2𝐼 = exp(4𝜎2𝜒)− 1. (2.4.57)
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As long as 𝜎2𝜒 is small, the exponent can be expanded in a power series such that

�̃�2𝐼
∼= 4𝜎2𝜒. (2.4.58)

While this approximation works well in weak turbulence, a different theory is needed

to describe the scintillation index in strong turbulence.

2.4.1.8 Intensity Probability Distribution.

Assuming 𝜒 is Gaussian distributed, an expression for the probability distribution

function (pdf) of 𝐼 can also be derived. The pdf of 𝜒 is given as

𝑝(𝜒) =
1√
2𝜋𝜎𝜒

exp

[
−(𝜒− ⟨𝜒⟩)

2

2𝜎2𝜒

]
. (2.4.59)

Expressing 𝜒 in terms of 𝐼 gives

𝜒 =
1

2
ln

𝐼

𝐴20
. (2.4.60)

Since this function is monotonic, the transform from 𝜒 to 𝐼 requires that

𝑝(𝐼) d𝐼 = 𝑝(𝜒) d𝜒. (2.4.61)

Taking the derivative of Eq. (2.4.60) with respect to 𝐼 gives

d𝜒

d𝐼
=

1

2𝐼
, (2.4.62)

so the pdf of 𝐼 becomes

𝑝(𝐼) =
1

2
√
2𝜋𝐼𝜎𝜒

exp

{
− [ln(𝐼/𝐴

2
0)− 2 ⟨𝜒⟩]2
8𝜎2𝜒

}
. (2.4.63)
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This is known as a log-normal distribution where the mean and variance of 𝐼 can be

found to be

⟨𝐼⟩ = 𝐴20 exp
(
2 ⟨𝜒⟩+ 2𝜎2𝜒

)
(2.4.64)

𝜎2𝐼 = ⟨𝐼⟩2
[
exp(4𝜎2𝜒)− 1

]
. (2.4.65)

As expected, this reduces to the expression for the scintillation index given by Eq. (2.4.57).

While experiments have demonstrated good agreement between the measured in-

tensity fluctuations and the log-normal distribution in weak turbulence, the agreement

lessens with increased turbulence [2]. Different means are required to estimate the

pdf of the intensity fluctuations in strong turbulence.

2.4.1.9 Gaussian Beams.

While the above results are primarily based on a point source, Rytov theory allows

for the derivation of expressions for other source beacons such as Gaussian beams.

In general, the MCF for light after passing through turbulence can be expressed in

terms of the Rytov approximation up to second order as

Γ(𝒓1, 𝒓2) = ⟨𝑈(𝒓1)𝑈∗(𝒓2)⟩

=𝑈0(𝒓1)𝑈
∗
0 (𝒓2) ⟨exp[𝜓1(𝒓1) + 𝜓2(𝒓1) + 𝜓∗

1(𝒓2) + 𝜓∗
2(𝒓2)]⟩ . (2.4.66)

The ensemble average can be estimated by using the method of cumulants [62] where

⟨exp(𝑋)⟩ ≃ exp
[
⟨𝑋⟩+ 1

2
(
〈
𝑋2
〉− ⟨𝑋⟩2)] . (2.4.67)

37



This expression becomes an equality only when 𝑋 is Gaussian. Inserting Eq. (2.4.66)

into (2.4.67) and only keeping terms up to the second order produces

Γ(𝒓1, 𝒓2) =𝑈0(𝒓1)𝑈
∗
0 (𝒓2) exp

{
⟨𝜓2(𝒓1)⟩+ 1

2

〈
[𝜓1(𝒓1)]

2〉+ ⟨𝜓∗
2(𝒓2)⟩+

1

2

〈
[𝜓∗
1(𝒓2)]

2〉
+ ⟨𝜓1(𝒓1)𝜓∗

1(𝒓2)⟩} . (2.4.68)

If the source is a coherent Gaussian beam, its source field can be expressed as

𝑈0(𝝆, 0) = exp

[
−
(
1

𝑤20
+

j𝑘

2𝑅0

)
∣𝝆∣2
]
, (2.4.69)

where 𝑤0 is the source radius and 𝑅0 is the source radius of curvature. If there was

no turbulence, its field after propagating a distance 𝐿 would be given by

𝑈0(𝝆, 𝐿) =
𝑤0
𝑤
exp

[
−
(
1

𝑤2
+
j𝑘

2𝑅

)
∣𝝆∣2 + j(𝑘𝐿− 𝜑)

]
, (2.4.70)

where

𝜑 =arctan
Λ0
Θ0

, (2.4.71)

𝑤 =𝑤0

√
Θ20 + Λ

2
0, (2.4.72)

𝑅 =
𝑅0 (Θ

2
0 + Λ

2
0) (1−Θ0)

Θ20 + Λ
2
0 −Θ0

, (2.4.73)

Θ0 =1− 𝐿

𝑅0
, (2.4.74)

Λ0 =
2𝐿

𝑘𝑤20
. (2.4.75)

Θ0 and Λ0 are known as the input beam parameters, where Θ0 is the curvature

parameter (< 1 for a converging beam, > 1 for a diverging beam, and equals 1 for a

collimated beam) and Λ0 is the Fresnel ratio [2]. Alternatively, 𝑤 and 𝑅 can define
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output beam parameters given by

Θ =1 +
𝐿

𝑅

=
Θ0

Θ20 + Λ
2
0

, (2.4.76)

Λ =
2𝐿

𝑘𝑤2

=
Λ0

Θ20 + Λ
2
0

. (2.4.77)

If the beam travels through turbulence, the MCF can be computed by using

Eqs. (2.4.69) and (2.4.70) in (2.4.68). The derivation is quite complicated and found

in [2], so only the final result is given here as

Γ(𝝆1,𝝆2, 𝐿) =
𝑤20
𝑤2

exp

[
−∣𝝆1∣

2 + ∣𝝆2∣2
𝑤2

− j𝑘

2𝑅

(∣𝝆1∣2 − ∣𝝆2∣2)− 4𝜋2𝑘2𝐿
∫ 1

0

∫ ∞

0

𝜅Φ𝑛(𝜅)

×
{
1− exp

(
−Λ𝐿𝜅

2𝜉2

𝑘

)
𝐽0
[∣∣(1−Θ𝜉)𝝆𝑑 − 2jΛ𝜉𝝆𝑠∣∣ 𝜅]

}
d𝜅 d𝜉

]
,

(2.4.78)

where Θ = 1−Θ, 𝝆𝑑 = 𝝆1 − 𝝆2, and 𝝆𝑠 = (𝝆1 + 𝝆2)/2.

Due to the complexity of this expression, it is difficult to arrive at analytic ex-

pressions for specific field statistics. However, good approximations can be obtained.

One of particular interest is the wave structure function. As before, the derivation

can be found in [2] and only the final result is given here. Using the Kolmogorov

power spectrum of Eq. (4.2.6) and assuming constant turbulence along the path, it

can be closely estimated as

𝒟(𝜌, 𝐿) = 8.80ℛ
[
𝑎

(
𝑘𝜌2

𝐿

)5/6
+ 0.618Λ11/6

(
𝑘𝜌2

𝐿

)]
, (2.4.79)
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where

𝑎 =

⎧⎨
⎩
1−Θ8/3
1−Θ for Θ ≥ 0,
1 + ∣Θ∣8/3
1−Θ for Θ < 0.

(2.4.80)

One final statistical quantity of interest is the scintillation index. It is again

computed through Eqs. (2.4.50) and (2.4.58), but this time 𝜓1 is based on a Gaussian

beam source instead of a point source. The required quantities are found to be [2]

〈∣𝜓1∣2〉 =4𝜋2𝑘2𝐿
∫ 1

0

∫ ∞

0

𝜅Φ𝑛(𝜅) exp

(
−Λ𝐿𝜅

2𝜉2

𝑘

)
𝐼0(2Λ ∣𝝆∣𝜅𝜉) d𝜅 d𝜉, (2.4.81)

〈
𝜓21
〉
=− 4𝜋2𝑘2𝐿

∫ 1

0

∫ ∞

0

𝜅Φ𝑛(𝜅) exp

(
−Λ𝐿𝜅

2𝜉2

𝑘

)
exp

[
− j𝐿𝜅

2

𝑘
𝜉(1−Θ𝜉)

]
d𝜅 d𝜉,

(2.4.82)

where 𝐼0 is a modified Bessel function of the first kind. When these expressions

are inserted into the relevant equations and evaluated using the Kolmogorov power

spectrum, they produce

�̃�2𝐼 = 38.4ℛRe
[
j5/62𝐹1

(
−5
6
,
11

6
;
17

6
; Θ + jΛ

)]
− 26.3ℛΛ5/61𝐹1

(
−5
6
; 1;

2 ∣𝝆∣2
𝑤2

)
,

(2.4.83)

where 1𝐹1 is the confluent hypergeometric function and 2𝐹1 is the hypergeometric

function. In contrast to the scintillation index for a point source, the scintillation

index for a Gaussian beam is not constant across the beam cross section.

2.4.2 Strong Turbulence.

While the Rytov approximation is adequate to predict the second-order statistics

for a point source, such as the OTF, WSF, and 𝑟0 at all turbulence strengths, this

is not necessarily the case for Gaussian beams. Strong turbulence also presents its

own set of challenges. The most obvious is the failure of Rytov theory to accurately
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predict �̃�2𝐼 . An additional issue deals with he creation of optical vortices in the

wavefront which lead to discontinuities in the phase of the field. While many theories

have been developed to model strong turbulence [12, 21, 22, 27, 35, 53, 54, 93], it has

been demonstrated that most are equivalent up to the second-order under appropriate

assumptions [13]. This section summarizes a few of the more useful theories including

the parabolic equation method, the effective parameters method, and extended Rytov

theory. The intent is to better estimate the statistical properties of a Gaussian beam

traveling through strong turbulence.

2.4.2.1 Parabolic Equation Method.

As with Rytov theory, the starting point for the parabolic method is the stochas-

tic Helmholtz equation given by Eq. (2.4.8). This time the substitution 𝑈(𝒓) =

𝑉 (𝒓) exp(j𝑘𝑧) is made to produce

2j𝑘
∂𝑉 (𝒓)

∂𝑧
+
∂2𝑉 (𝒓)

∂𝑧2
+∇2𝑇𝑉 (𝒓) + 2𝑘2𝑛1(𝒓)𝑉 (𝒓) = 0, (2.4.84)

where ∇2𝑇 = ∂2/∂𝑥2+∂2/∂𝑦2 is the transverse Laplace operator. Making the paraxial

approximation that ∂2𝑉/∂𝑧2 is much smaller than any of the other terms, it is dropped

thereby producing the parabolic differential equation

2j𝑘
∂𝑉 (𝒓)

∂𝑧
+∇2𝑇𝑉 (𝒓) + 2𝑘2𝑛1(𝒓)𝑉 (𝒓) = 0. (2.4.85)

The parabolic equation for the MCF of a general field can be found by first replac-

ing 𝑉 (𝒓) in Eq. (2.4.85) with 𝑉 (𝝆1, 𝑧) then multiplying this expression by 𝑉
∗(𝝆2, 𝑧).

The process is then repeated except 𝝆1 and 𝝆2 are switched and the complex conjugate

of the expression is taken. These two expressions are the subtracted and averaged
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producing

2j𝑘
∂

∂𝑧
Γ(𝝆1,𝝆2, 𝑧) +

(∇2𝑇1 −∇2𝑇2)Γ(𝝆1,𝝆2, 𝑧)
+ 2𝑘2 ⟨[𝑛1(𝝆1, 𝑧)− 𝑛1(𝝆2, 𝑧)]𝑉 (𝝆1, 𝑧)𝑉

∗(𝝆2, 𝑧)⟩ = 0, (2.4.86)

where ∇2𝑇1 and ∇2𝑇2 are transverse Laplace operators over 𝝆1 and 𝝆2 respectively. As

demonstrated by Ishimaru [43], assuming 𝑛1 is a Gaussian random field that is delta

correlated in 𝑧 such that ⟨𝑛1(𝝆1, 𝑧1)𝑛1(𝝆2, 𝑧2)⟩ = 𝛿(𝑧1 − 𝑧2)𝐴𝑛(𝝆1 − 𝝆2) allows for

Eq. (2.4.86) to be expressed as

{
2j𝑘

∂

∂𝑧
+
(∇2𝑇1 −∇2𝑇2)+ 2j𝑘3 [𝐴𝑛(0)−𝐴𝑛(𝝆1 − 𝝆2)]

}
Γ(𝝆1,𝝆2, 𝑧) = 0. (2.4.87)

Using the relation for isotropic turbulence of [2, 43]

𝐴𝑛(𝝆) = 4𝜋2
∫ ∞

0

𝜅Φ𝑛(𝜅)𝐽0(∣𝝆∣𝜅) d𝜅, (2.4.88)

a lengthy derivation given in [43] ultimately results in a solution to this differential

equation which can be expressed as

Γ(𝝆1,𝝆2, 𝐿) =
1

(𝜆𝐿)2

∫∫
𝒫

∫∫
𝒫

Γ(𝝆′
1,𝝆

′
2, 0) exp

[
𝑗𝑘

2𝐿

(
∣𝝆1 − 𝝆′

1∣2 − ∣𝝆2 − 𝝆′
2∣2
)]

× exp
(
−4𝜋2𝑘2𝐿

∫ 1

0

∫ ∞

0

𝜅Φ𝑛(𝜅) {1− 𝐽0 [∣𝜉(𝝆′
1 − 𝝆′

2)

+ (1− 𝜉)(𝝆1 − 𝝆2)∣𝜅]} d𝜅 d𝜉) d2𝝆′
1 d
2𝝆′
2. (2.4.89)

This expression compares closely to Eq. (2.2.3) where the the only difference is the

extra exponential term that accounts for the turbulence along the propagation path.
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2.4.2.2 Effective Parameters Method.

One of the drawbacks to the parabolic equation method is that it is analytically

intractable for many of the cases of interest, such as when a Gaussian beam is used

with the Kolmogorov power spectrum. While Eq. (2.4.89) can be numerically eval-

uated, this is computationally intensive and it does not allow for further insight to

the behavior of the MCF. As a result, other means of estimating the effect of strong

turbulence on the propagation of Gaussian beams have been developed. The one

summarized here, known as the effective parameters method, allows for the results

based on Rytov theory for weak turbulence to be directly extended into the strong

turbulence regime.

Studies on the impact of strong turbulence on Gaussian beams indicated that

diffraction due to the turbulence caused the mean radius of curvature of the beam to

be reduced more than that for a plane wave or spherical wave [9,10]. Since the the ra-

dius of curvature and beam size are linked through geometric optics, this then causes

the beam size to be larger than otherwise be expected. As the behavior of Gaus-

sian beams depend in large part on their beam size and radius of curvature, further

propagation of the beam must take these new values into account. These changes are

accounted for by defining new output beam parameters based on the actual effective

turbulence induced beam size and radius of curvature instead of those predicted by

vacuum propagation [1]. Analysis based on approximations of the parabolic equa-

tion indicates the effective beam radius and radius of curvature in strong, constant

turbulence can be closely estimated by

𝑤𝑡 =𝑤0

√
Θ20 + Λ

2
0 + 25.6ℛ6/5Λ0 (2.4.90)

𝑅𝑡 =−
𝐿
(
Θ20 + Λ

2
0 + 25.6ℛ6/5Λ0

)
Θ20 + Λ

2
0 −Θ0 + 38.4ℛ6/5Λ0

. (2.4.91)
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The effective beam parameters are then defined as

Θ𝑒 =1 +
𝐿

𝑅𝑡
=

Θ0 − 12.8ℛ6/5Λ0
Θ20 + Λ

2
0 + 25.6ℛ6/5Λ0

(2.4.92)

Λ𝑒 =
2𝐿

𝑘𝑤2𝑡
=

Λ0
Θ20 + Λ

2
0 + 25.6ℛ6/5Λ0

. (2.4.93)

Replacing the output beam parameters in any Rytov theory based expression with

these effective beam parameters allows them to be used as good estimates for the

behavior of these beams at any turbulence level.

2.4.2.3 Extended Rytov Theory.

While the parabolic and effective parameter methods work well for describing the

second-order statistics of the field, such is not the case for fourth-order statistics like

�̃�2𝐼 . While the parabolic method can be used to derive the fourth-order statistics,

it quickly becomes so complex it is difficult to get any useful results. One method,

known as the extended Rytov theory, was developed to avoid these complications by

taking a more heuristic approach to the problem. Since it makes use of conventional

Rytov theory, its results follow directly from those found for weak turbulence.

Extended Rytov theory is built on the assumption that turbulence causes refrac-

tion primarily through the larger eddy sizes, while it causes diffraction primarily

through the smaller eddy sizes. Furthermore, it assumes the refractive and diffractive

fluctuations are independent of each other. In weak turbulence, all eddy sizes have a

role in either refracting or diffracting the beam, but in medium to strong turbulence

the mid-scale sizes cease to play a part in either refraction or diffraction. This effect is

modeled by introducing filters into the power spectrum of the index-of-refraction fluc-

tuations that only keep the high and low scale factors. The Rytov theory analysis is

then re-accomplished using this filtered power spectrum. The cutoffs for these filters
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can then be found by matching the results from extended Rytov theory to those of

conventional Rytov theory in weak turbulence and asymptotic theory for very strong

turbulence.

An example of extended Rytov theory is given here by deriving an expression for

�̃�2𝐼 that is accurate at all turbulence levels. The filtering of the index-of-refraction

power spectrum results in expressing the Rytov perturbation as 𝜓 = 𝜓𝑋 +𝜓𝑌 , where

𝜓𝑋 accounts for the refractive effects of the turbulence and 𝜓𝑌 accounts for the

diffractive effects. The log-amplitude 𝜒 is then simply the sum of the real parts of 𝜓𝑋

and 𝜓𝑌 . Since they are independent, the log-amplitude variance can be expressed as

𝜎2𝜒 = 𝜎2𝑋 + 𝜎2𝑌 , where 𝑋 and 𝑌 are the real parts of 𝜓𝑋 and 𝜓𝑌 . Inserting this into

Eq. (2.4.57) gives

�̃�2𝐼 = exp(4𝜎2𝑋 + 4𝜎
2
𝑌 )− 1. (2.4.94)

For a point source, the scintillation index in weak turbulence or very strong turbulence

are found to be [2]

�̃�2𝐼 ≃

⎧⎨
⎩
4ℛ for ℛ ≪ 1,

1 +
1.09

ℛ2/5 for ℛ ≫ 1.

(2.4.95)

Using the filter functions

𝐺𝑋(𝜅) = exp

(
− 𝜅2

𝜅2𝑋

)
, (2.4.96)

𝐺𝑌 (𝜅) =
𝜅11/3

(𝜅2 + 𝜅2𝑌 )
11/6

(2.4.97)

in Eq. (2.4.52) and matching the relevant constraints produces

𝜎2𝑋 ≃
0.49ℛ

(1 + 3.0ℛ6/5)7/6
, (2.4.98)

𝜎2𝑌 ≃
0.51ℛ

(1 + 3.6ℛ6/5)5/6
. (2.4.99)
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Figure 2. Comparison of �̃�2

𝐼 for weak (green), all (blue) and very strong (red) turbulence
levels.

Inserting this into Eq. (2.4.94) gives the final expression for the scintillation index as

�̃�2𝐼 = exp

[
2.0ℛ

(1 + 3.0ℛ6/5)7/6
+

2.0ℛ
(1 + 3.6ℛ6/5)5/6

]
− 1. (2.4.100)

This behavior is shown in Fig. 2 along with the limiting values given in Eq. (2.4.95).

Equation (2.4.100) has demonstrated good agreement with both experimental and

simulation results at all turbulence strength levels [2]. Following the same procedure,

the scintillation index for a non-converging Gaussian beam can be found to be [2]

�̃�2𝐼 = exp

⎡
⎢⎣ 0.49𝜎2𝐵[
1 + 0.56(1 + Θ)𝜎

12/5
𝐵

]7/6 + 0.51𝜎2𝐵(
1 + 0.69𝜎

12/5
𝐵

)5/6
⎤
⎥⎦− 1 + 44.0ℛΛ5/6𝑒 ∣𝝆∣2𝑤2𝑡

,

(2.4.101)

where

𝜎2𝐵 = 38.4ℛRe
[
j5/62𝐹1

(
−5
6
,
11

6
;
17

6
; Θ + jΛ

)
− 11
16
Λ5/6

]
. (2.4.102)
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Another advantage of treating the large-scale and small-scale fluctuations inde-

pendently is that this can be used to derive the probability density of the intensity

fluctuations. Based on the previous example, it is reasonable to assume the intensity

can be represented as

𝐼 = ⟨𝐼⟩ 𝐼𝑋𝐼𝑌 , (2.4.103)

where both 𝐼𝑋 and 𝐼𝑌 are independent unit-mean random variables. It is further

assumed that they are gamma distributed with distributions given by

𝑝𝑋(𝐼𝑋) =
𝛼(𝛼𝐼𝑋)

𝛼−1

Γ(𝛼)
exp(−𝛼𝐼𝑋) for 𝛼 > 0 and 𝐼𝑋 > 0, (2.4.104)

𝑝𝑌 (𝐼𝑌 ) =
𝛽(𝛽𝐼𝑌 )

𝛽−1

Γ(𝛽)
exp(−𝛽𝐼𝑌 ) for 𝛽 > 0 and 𝐼𝑌 > 0, (2.4.105)

where 𝛼 = 1/𝜎2𝐼𝑋 , 𝛽 = 1/𝜎2𝐼𝑌 , and Γ is the gamma function. By fixing 𝐼𝑋 and using

d𝐼𝑌 = d𝐼/(⟨𝐼⟩ 𝐼𝑋), the pdf of 𝐼 conditioned on 𝐼𝑋 can be expressed as

𝑝𝐼(𝐼∣𝐼𝑋) = 𝛽

Γ(𝛽) ⟨𝐼⟩ 𝐼𝑋

(
𝛽𝐼

⟨𝐼⟩ 𝐼𝑋

)𝛽−1
exp

(
− 𝛽𝐼

⟨𝐼⟩ 𝐼𝑋

)
for 𝐼 > 0. (2.4.106)

The unconditioned pdf is found by averaging over 𝐼𝑋 which produces

𝑝𝐼(𝐼) =
2

Γ(𝛼)Γ(𝛽)𝐼

(
𝛼𝛽𝐼

⟨𝐼⟩
)(𝛼+𝛽)/2

𝐾𝛼−𝛽

(
2

√
𝛼𝛽𝐼

⟨𝐼⟩

)
for 𝐼 > 0, (2.4.107)

where 𝐾𝜈 is a modified Bessel function of the second kind. This pdf is known as the

gamma-gamma distribution and has a mean of ⟨𝐼⟩ and variance of ⟨𝐼⟩2 [1/𝛼+ 1/𝛽 +
1/(𝛼𝛽)]. By using

𝜎2𝐼𝑋 =exp(4𝜎𝑋)− 1, (2.4.108)

𝜎2𝐼𝑌 =exp(4𝜎𝑌 )− 1, (2.4.109)
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𝛼 and 𝛽 can be defined entirely in terms of the turbulence parameters through expres-

sions such as Eqs. (2.4.98) and (2.4.99). Simulations have shown that the gamma-

gamma distribution makes a good fit with the strong turbulence intensity fluctua-

tions [2].

2.4.2.4 Branch points and branch cuts.

Another characteristic of strong turbulence is the appearance of unavoidable phase

discontinuities in the wavefront [31, 34]. While the phase of a field can take on any

value, it is defined as the imaginary part of an exponential, so phases that are multiple

values of 2𝜋 apart from each other are indistinguishable when measured. As a result,

when the phase is calculated, by taking the arctangent of the imaginary part of

the field divided by the real part of the field, it is bounded between −𝜋 and 𝜋 (or

any other 2𝜋 interval). This places a discontinuity between the second and third

quadrants of the imaginary plane, or wherever the real part of the field is negative

and the imaginary part switches signs. As long as the discontinuity follows a closed

loop, or enters and exits through the boundaries of the region of interest, it can

be accounted for by simply adding or subtracting 2𝜋 to the appropriate side of the

discontinuity. However, if this is not the case, the discontinuity cannot be eliminated.

Branch points are locations of zero intensity in the field, and they create optical

vortices in the phase. Zeros in the intensity come about whenever both the real

and imaginary portions of the field equal zero at the same point. Since the real

and imaginary portions of the field must be continuous, this only happens when zero

contours of the real part cross zero contours of the imaginary part. This is illustrated

in two dimensions in Fig. 3 where phase discontinuities occur at all the red-to-blue

transitions. As long as the zero contours of the real and imaginary parts of the field

do not cross, as at the top or the lower right corner, the discontinuity can easily be
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Phase Contours

Figure 3. Contour plot of the phase of a field after passing through turbulence. The
zero of the real part is indicated by white lines, while the zero of the imaginary part
is indicated by black lines. The phase range (−𝜋,−𝜋/2) is indicated by blue, (−𝜋/2, 0) is
in green, (0, 𝜋/2) is in orange, and (𝜋/2, 𝜋) is in red. Branch points occur wherever the
white and black lines cross. Phase cuts occur wherever red and blue portions meet.

remedied. But when they do cross, such as in the lower left corner, branch points

are created which serve as a starting or ending point for a discontinuity. These

discontinuities can be moved by changing the 2𝜋 wrapping interval, but they cannot

be eliminated. The density of branch points grows with increasing turbulence [85]

so while they are of little concern in weak turbulence, they can have a considerable

effect in strong turbulence.

2.5 Self-Referencing Interferometer (SRI)

The self-referencing interferometer (SRI) directly measures the phase aberrations

of incident light by interfering this light with a temporally coherent plane wave [65].

The way this is accomplished is shown conceptually in Fig. 4. The SRI first splits

the light into two branches: a reference branch and a beacon branch. The light in

the reference branch is coupled into a single mode optical fiber which only allows
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Figure 4. Diagram of a self-referencing interferometer. Light is split between a refer-
ence path and a beacon path. The light in the reference path is spatially filtered by
a single mode fiber, and potentially phase shifted, then recombined with the light in
the reference path. The resulting interference pattern is directly related to the phase
aberration.

the unaberrated portion of the field to pass through. It is then recombined with the

original wavefront from the beacon branch which produces an interference pattern on

a detector.

If the field in the beacon path is 𝑈 = 𝐴 exp(j𝜙) and the field exiting the reference

path is 𝑈𝑟 = 𝐴𝑟 exp(j𝜙𝑟), then the intensity pattern over the detector is given by

𝐼 = ∣𝑈 + 𝑈𝑟∣2

= (𝑈 + 𝑈𝑟)(𝑈
∗ + 𝑈∗

𝑟 )

=
(
𝐴𝑒j𝜙 + 𝐴𝑟𝑒

j𝜙𝑟
) (
𝐴𝑒−j𝜙 + 𝐴𝑟𝑒

−j𝜙𝑟
)

= 𝐴2 + 𝐴2𝑟 + 𝐴𝐴𝑟
[
𝑒j(𝜙−𝜙𝑟) + 𝑒−j(𝜙−𝜙𝑟)

]
= 𝐴2 + 𝐴2𝑟 + 2𝐴𝐴𝑟 cos(𝜙− 𝜙𝑟). (2.5.1)

Using the relations 𝐴 = 𝐴0 exp(𝜒) and 𝜙 = 𝜙𝑟 + 𝑆, this becomes

𝐼 = 𝐴20 exp(2𝜒) + 𝐴2𝑟 + 2𝐴0𝐴𝑟 exp(𝜒) cos𝑆. (2.5.2)
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This indicates the resulting interference pattern is directly related to the phase ab-

beration 𝑆.

All that is now required is to determine 𝑆 from this interference pattern. This

can be accomplished through the use of phase shifting interferometry (PSI) [56]. In

PSI, the phase in one of the branches is shifted by a known amount with respect to

the other branch. For instance, if the reference branch makes the four phase shifts

of 0, −𝜋/2, −𝜋, and −3𝜋/2, then the four resulting interference patterns can be

represented as

𝐼1 = 𝐴20 exp(2𝜒) + 𝐴2𝑟 + 2𝐴0𝐴𝑟 exp(𝜒) cos(𝑆 + 0)

= 𝐴20 exp(2𝜒) + 𝐴2𝑟 + 2𝐴0𝐴𝑟 exp(𝜒) cos𝑆, (2.5.3)

𝐼2 = 𝐴20 exp(2𝜒) + 𝐴2𝑟 + 2𝐴0𝐴𝑟 exp(𝜒) cos(𝑆 + 𝜋/2)

= 𝐴20 exp(2𝜒) + 𝐴2𝑟 − 2𝐴0𝐴𝑟 exp(𝜒) sin𝑆, (2.5.4)

𝐼3 = 𝐴20 exp(2𝜒) + 𝐴2𝑟 + 2𝐴0𝐴𝑟 exp(𝜒) cos(𝑆 + 𝜋)

= 𝐴20 exp(2𝜒) + 𝐴2𝑟 − 2𝐴0𝐴𝑟 exp(𝜒) cos𝑆, (2.5.5)

𝐼4 = 𝐴20 exp(2𝜒) + 𝐴2𝑟 + 2𝐴0𝐴𝑟 exp(𝜒) cos(𝑆 + 3𝜋/2)

= 𝐴20 exp(2𝜒) + 𝐴2𝑟 + 2𝐴0𝐴𝑟 exp(𝜒) sin𝑆. (2.5.6)

A little algebra produces

𝐼4 − 𝐼2
𝐼1 − 𝐼3

= tan𝑆, (2.5.7)

or

𝑆 = arctan

(
𝐼4 − 𝐼2
𝐼1 − 𝐼3

)
. (2.5.8)

By keeping track of the signs of the numerator and denominator in Eq. (2.5.8), 𝑆 can

be recovered within a 2𝜋 interval. As can be seen from Eq. (2.5.7), all the 𝜒 terms

divide out, so the log-amplitude variations have no part in the phase calculation. This
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means the SRI is theoretically immune to scintillation [6]. For this reason, the SRI

makes an attractive WFS for use with strong turbulence.

These phase shifts can be made spatially, temporally, or both [66]. Performing

them spatially is advantageous in that the four measurements can be made simulta-

neously which mitigates temporal effects. The drawback to this method is it requires

splitting the light into four different paths. Not only must these paths must be closely

aligned and matched, but this splitting of the light lowers the overall signal strength

of each path. This may be an issue in very low-light conditions. Making the phase

shifts temporally requires much less hardware and does not require splitting the light

as much. However, if the incident light is dynamic, then it may change from one

measurement to the next thereby decreasing the measurement accuracy. Addition-

ally, the phase shift cannot be made temporally as accurately as they can be made

spatially. These inaccuracies in the phase shifts also lead to less accurate phase mea-

surements [56]. A third approach is to make two measurements at a time, which

strikes a balance between the purely spatial and temporal approaches.

To keep things simple, this research assumed spatial PSI. However, these results

can be extended to temporal PSI by including the temporal effects as described in [66]

and the phase shift error effects as described in [56].

2.6 Single-Mode Optical Fibers

As explained above, an SRI makes use of a single-mode optical fiber to optically

filter the incident wavefront. As a result, it is important to understand the operation

of single-mode fibers before it is possible to fully understand the operation of an

SRI. A conceptual diagram of an optical fiber is found in Fig. 5. As indicated, it

is composed of an optically clear material where the index-of-refraction in the core

𝑛1 is slightly greater than that in the cladding 𝑛2. This difference in the index-or-
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Cladding

Core

Figure 5. Diagram of a single-mode optical fiber

refraction is typically about 0.2% for single-mode fibers, while it is closer to 1% in

multi-mode fibers [14]. While the following analysis assumes the index-of-refraction

is constant within the core or cladding, this is not necessarily the case in practice.

Frequently, fibers are constructed such that there is a smooth transition from the

core to cladding. These are known as graded index (GRIN) fibers. However, this

fact is not limiting since behavior of GRIN fibers can be closely approximated by an

effective step-index fiber. Therefore, understanding the operation of step-index fibers

is sufficient for understanding the operation of optical fibers in general [14, 59].

Since the difference in index-of-refraction between the core and cladding is so

small, optical fibers are weak waveguides that only confine wavefronts that are very

nearly linearly polarized in the transverse plane of the fiber. For this reason, the

propagation modes of optical fibers are known as LP𝑙𝑚 modes. As usual, the deriva-

tion for the expressions of the LP𝑙𝑚 modes begins with the Helmholtz equation of

Eq. (2.1.16). This time it is assumed 𝑈(𝒓) = 𝑉 (𝝆) exp(j𝛽𝑧), where

𝑘𝑛2 < 𝛽 < 𝑘𝑛1. (2.6.1)

Inserting this into the Helmholtz equation and using the paraxial approximation

produces

(∇2𝑇 + 𝛽2𝑡 )𝑉 (𝝆) = 0, (2.6.2)
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where 𝛽𝑡 = (𝑘2𝑛2𝑥 − 𝛽)1/2 and 𝑛𝑥 is the index-of-refraction in either the core or

cladding. Since the fiber displays cylindrical symmetry, it can be assumed the solution

to Eq. (2.6.2) is of the form 𝑉 (𝝆) = 𝑅(𝜌)Φ(𝜙), where 𝜌 and 𝜙 are respectively

the radial and azimuthal coordinates. Expressing ∇2𝑇 in cylindrical coordinates and
making this substitution produces

𝜌2

𝑅

d

d𝜌

(
𝜌
d𝑅

d𝜌

)
+ 𝜌2𝛽2𝑡 = −

1

Φ

d2Φ

d𝜙2
. (2.6.3)

Since the left side of the equation is only a function of 𝜌 and the right side of the

equation is only a function of 𝜙, each side must be equal to the same constant 𝑙2.

This implies two ordinary differential equations of

d2Φ

d𝜙2
+ 𝑙2Φ = 0, (2.6.4)

d

d𝜌

(
𝜌
d𝑅

d𝜌

)
+

(
𝛽2𝑡 −

𝑙2

𝑟2

)
𝑅 = 0. (2.6.5)

The solution to Eq. (2.6.4) can be readily found to be

Φ(𝜙) = 𝐶1 exp(j𝑙𝜙) + 𝐶2 exp(−j𝑙𝜙), (2.6.6)

where 𝐶1 and 𝐶2 are arbitrary constants. Since Φ must be periodic over a range of

2𝜋, 𝑙 must be an integer.

Equation (2.6.5) can be recognized as a form of Bessel’s equation [42, Eq. (8.491 1)]

with the solution

𝑅(𝜌) =

⎧⎨
⎩
𝐶3𝐽𝑙(𝛽𝑡𝜌) + 𝐶4𝑌𝑙(𝛽𝑡𝜌) for 𝛽𝑡 ∈ ℜ,

𝐶5𝐼𝑙(∣𝛽𝑡∣𝜌) + 𝐶6𝐾𝑙(∣𝛽𝑡∣𝜌) for 𝛽𝑡 ∈ ℑ,
(2.6.7)

where 𝐽𝑙(⋅) and 𝑌𝑙(⋅) are Bessel functions of the first and second kind, 𝐼𝑙(⋅) and 𝐾𝑙(⋅)
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are modified Bessel functions of the first and second kind, and all the 𝐶 coefficients are

arbitrary constants. From the definition of 𝛽𝑡 and the constraint given by Eq. (2.6.1),

it can be seen that 𝛽𝑡 is real in the core and imaginary in the cladding. The fact

𝑌𝑙(0) = −∞ requires 𝐶4 = 0. Furthermore, 𝐼𝑙(𝜌) grows with increasing 𝜌, but the

field should attenuate in the cladding, so 𝐶5 = 0. This means the expression for 𝑅

must be of the form

𝑅(𝜌) =

⎧⎨
⎩
𝐶3𝐽𝑙(𝑢𝜌/𝑎) for 𝜌 ≤ 𝑎,

𝐶6𝐾𝑙(𝑤𝜌/𝑎) for 𝜌 ≥ 𝑎,

(2.6.8)

where 𝑢 = 𝑎(𝑘2𝑛21 − 𝛽2)1/2, 𝑤 = 𝑎(𝛽2 − 𝑘2𝑛22)
1/2, and 𝑎 is the core radius.

One of the coefficients can be determined by analyzing the field boundary con-

ditions at the core/cladding interface. The boundary condition for the electric field

normal to this interface is [44]

𝑛21𝐸(𝑎
−) = 𝑛22𝐸(𝑎

+), (2.6.9)

where the superscripts on 𝑎 mean slightly more than or slightly less than. Since

𝑛1 ≃ 𝑛2, this boundary condition can be closely approximated as

𝑅(𝑎−) = 𝑅(𝑎+), (2.6.10)

𝐶3𝐽𝑙(𝑢) = 𝐶6𝐾𝑙(𝑤), (2.6.11)

𝐶6 = 𝐶3
𝐽𝑙(𝑢)

𝐾𝑙(𝑤)
. (2.6.12)

Another boundary condition is that the 𝑧 component of the magnetic field must

be consistent across this interface [44]. The 𝑧 component of the magnetic field is

related to tangential components of the electric field by Eq. (2.1.9). This constraint
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implies that

d

d𝜌

[
𝜌𝐽𝑙

(𝑢𝜌
𝑎

)]∣∣∣∣
𝜌=𝑎

=
𝐽𝑙(𝑢)

𝐾𝑙(𝑤)

d

d𝜌

[
𝜌𝐾𝑙

(𝑤𝜌
𝑎

)]∣∣∣∣
𝜌=𝑎

(2.6.13)

𝑢𝐽𝑙−1(𝑢)− (𝑙 − 1)𝐽𝑙(𝑢) =− 𝐽𝑙(𝑢)

𝐾𝑙(𝑤)
[𝑤𝐾𝑙−1(𝑤) + (𝑙 − 1)𝐾𝑙(𝑤)] (2.6.14)

𝑢𝐽𝑙−1(𝑢)𝐾𝑙(𝑤) =− 𝑤𝐽𝑙(𝑢)𝐾𝑙−1(𝑤). (2.6.15)

Both 𝑢 and 𝑤 are functions of 𝛽, so Eq. (2.6.15) is actually a constraint on the

frequencies that propagate though the fiber. However, instead of solving for 𝛽 it

is more convenient to define a normalized frequency parameter 𝑣 = (𝑢2 + 𝑤2)1/2 =

𝑎𝑘(𝑛21 + 𝑛22)
1/2. Since 𝑣 is defined by the fiber characteristics, it is set when the fiber

is manufactured. The definition of 𝑣 along with Eq. (2.6.15) provides two equations

with two unknowns. As these equations are non-linear, they may have no solutions

or potentially many solutions for a given value of 𝑙. The LP𝑙𝑚 propagation modes are

then defined by the values of 𝑢 and 𝑤 that solve these equations, where 𝑚 represents

a particular solution for a given 𝑙.

When 𝑣 < 2.405, there is only one possible solution and it requires 𝑙 = 0 [14]. This

condition on 𝑣 defines a single-mode fiber that can only propagate the LP01 mode

given by

𝑀0(𝝆) =

⎧⎨
⎩
𝐶𝐽0

(
𝑢 ∣𝝆∣
𝑎

)
for ∣𝝆∣ ≤ 𝑎

𝐶
𝐽0(𝑢)

𝐾0(𝑤)
𝐾0

(
𝑤 ∣𝝆∣
𝑎

)
for ∣𝝆∣ ≥ 𝑎,

(2.6.16)

where 𝐶 = 𝐶3(𝐶1 + 𝐶2). It is convenient to normalize this mode such that its inner

product is unity, or ∫∫
∣𝑀0(𝝆)∣2 d2𝝆 = 1. (2.6.17)
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When this normalization is carried out, the expression for the LP01 mode becomes

𝑀0(𝝆) =

⎧⎨
⎩

𝑤

𝑎𝑣
√
𝜋𝐽1(𝑢)

𝐽0

(
𝑢 ∣𝝆∣
𝑎

)
for ∣𝝆∣ ≤ 𝑎

𝑢

𝑎𝑣
√
𝜋𝐾1(𝑤)

𝐾0

(
𝑤 ∣𝝆∣
𝑎

)
for ∣𝝆∣ ≥ 𝑎.

(2.6.18)

When normalized in the manner of Eq. (2.6.17), the LP𝑙𝑚 modes form a complete

orthonormal set [14]. This means that any wavefront may be decomposed into the

LP𝑙𝑚 modes as

𝑈(𝝆) =
∑
𝑖

𝑏𝑖𝑀𝑖(𝝆), (2.6.19)

where 𝑏𝑖 are the mode coefficients and 𝑀𝑖(⋅) represent the modes. These coefficients
can be determined by

𝑏𝑖 =

∫∫
𝑈(𝝆)𝑀∗

𝑖 (𝝆) d
2𝝆. (2.6.20)

It is a simple matter to show that the power carried in each of these modes is ∣𝑏𝑖∣2.
If an electromagnetic field impinges on an optical fiber, the fiber will only pass the

portions of the field that match its propagation modes. The total power transmitted

through the fiber is then found by summing the magnitude squared of the coupling

coefficients of the propagation modes. The coupling efficiency can then be defined as

the ratio of the propagated power to the power in the original field. This is expressed

as

𝜂 =

∑
𝑖

∣𝑏𝑖∣2∫∫
∣𝑈(𝝆)∣2 d2𝝆

=

∑
𝑖

∫∫ ∫∫
𝑈(𝝆1)𝑀

∗
𝑖 (𝝆1)𝑈

∗(𝝆2)𝑀𝑖(𝝆2) d
2𝝆1 d

2𝝆2∫∫
∣𝑈(𝝆)∣2 d2𝝆

, (2.6.21)
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where the summation is only over the propagation modes. For a single-mode fiber,

this simplifies to

𝜂 =

∫∫ ∫∫
𝑈(𝝆1)𝑀

∗
0 (𝝆1)𝑈

∗(𝝆2)𝑀0(𝝆2) d
2𝝆1 d

2𝝆2∫∫
∣𝑈(𝝆)∣2 d2𝝆

(2.6.22)

In practice, a lens is normally used to maximize coupling by focusing the light onto

the end of the fiber. Due to the Fourier transform relation between the focal plane

and pupil plane as indicated by Eq. (2.1.36), the decomposition given in Eq. (2.6.19)

applies just as well in the pupil plane. In this case, the modes for the decomposition

are found by back-propagating the LP𝑙𝑚 modes to the pupil plane. A big advantage

in performing the calculation in the pupil plane instead of the focal plane is that

the effect of the aperture becomes multiplicative. The expression for the coupling

efficiency of a single-mode fiber then becomes

𝜂 =

∫∫
𝒫

∫∫
𝒫

𝑈(𝝆1)ℳ∗
0(𝝆1)𝑈

∗(𝝆2)ℳ0(𝝆2)𝑃 (𝝆1)𝑃 (𝝆2) d
2𝝆1 d

2𝝆2∫∫
∣𝑈(𝝆)∣2 𝑃 (𝝆) d2𝝆

, (2.6.23)

where ℳ0(⋅) is the back-propagated LP01 mode and 𝑃 (⋅) defines the effect of the
pupil. Since 𝑀0 is radially symmetric,ℳ0 can be found by way of the Fourier-Bessel

transform with [39]

ℳ0(𝝆) =
𝑘

𝑓

∫ ∞

0

𝑟𝑀0(𝑟)𝐽0

(
𝑘𝑟∣𝝆∣
𝑓

)
d𝑟, (2.6.24)

where 𝑓 is the distance between the focal plane and the pupil plane and the phase

factors were ignored. After a lengthy derivation, the back-propagated LP01 mode is
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found to be

ℳ0(𝝆) =

(
𝑘𝑎𝑤𝑣√
𝜋𝑓

) 𝑢𝐽0

(
𝑘𝑎∣𝝆∣
𝑓

)
− 𝑘𝑎∣𝝆∣

𝑓

𝐽0(𝑢)

𝐽1(𝑢)
𝐽1

(
𝑘𝑎∣𝝆∣
𝑓

)
[
𝑢2 −

(
𝑘𝑎∣𝝆∣
𝑓

)2][
𝑤2 +

(
𝑘𝑎∣𝝆∣
𝑓

)2] . (2.6.25)

Since this expression for the fiber mode can be analytically unwieldy, it can be closely

approximated with a Gaussian function given by

ℳ0(𝝆) = 2𝐴

√
2

𝜋
exp
(−4𝐴2 ∣𝝆∣2) , (2.6.26)

where 𝐴 can be found by the expression [58]

𝐴 =
𝑘𝑎

4𝑓

(
0.65 +

1.619

𝑣3/2
+
2.879

𝑣6

)
. (2.6.27)

The goodness of fit, found by taking the inner product of Eqs. (2.6.25) and (2.6.27),

is a function of 𝑣 and ranges from 0.946 for 𝑣 = 1.2 to 0.9965 for 𝑣 = 2.4 [58].
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III. Review of Related Research

The purpose of this chapter is to overview previously published research that

directly relates to the new research presented in this dissertation. This dissertation

research was primarily motivated by the hybrid wavefront sensor work of Ellis [25]. In

his work, two different wavefront sensors, including the self-referencing interferometer

(SRI), were combined in a way that increased performance over either wavefront

sensor alone. While he was able to validate this hybrid wavefront sensor concept, he

identified some shortcomings with his SRI model. The primary shortcoming was the

absence of any fiber coupling efficiency variations. Furthermore, only point sources

were used as beacons due to shortcomings in atmospheric theory when using extended,

partially coherent sources.

This dissertation research was intended to overcome these identified shortcomings.

It does so by focusing on three specific areas of analysis. The first deals with the

propagation of partially coherent fields through strong atmospheric turbulence. The

second examines the coupling of random fields into single-mode optical fibers. The

third analyzes the performance of self-referencing interferometers (SRI), particularly

with strong turbulence and extended beacons, including the fiber coupling efficiency

variantions. The results from this research not only serve to strengthen the work

by Ellis, but also provides analytic tools that may be used in many other fields of

research.

3.1 Partially Coherent Fields in Strong Turbulence

In the late 1960’s and throughout the 1970’s, much work was done on charac-

terizing the propagation of partially coherent fields through atmospheric turbulence

at all turbulence strength levels. Many different methods were proposed includ-
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ing the operational method [35], the extended Huygens-Fresnel principle [54], the

extended Rayleigh-Sommerfeld integral method [53], difference equations [12], the

diagram method [22], integral equations [93], transport theory [27], Markov approxi-

mations [82], and Feynman path integrals [21]. It has been shown that to the second

order when approximations similar to the paraxial approximation are used, all these

methods result in Eq. (2.4.89) [13]. When used with the Kolmogorov power spectrum

of Eq. (2.4.5), the integral in the exponential function becomes

− 4𝜋2𝑘2𝐿
∫ 1

0

∫ ∞

0

𝜅Φ𝑛(𝜅) {1− 𝐽0 [∣𝜉(𝝆′
1 − 𝝆′

2) + (1− 𝜉)(𝝆1 − 𝝆2)∣𝜅]} d𝜅 d𝜉

= −1.46𝐶2𝑛𝐾2𝐿

∫ 1

0

∣𝜉(𝝆′
1 − 𝝆′

2) + (1− 𝜉)(𝝆1 − 𝝆2)∣5/3 d𝜉 (3.1.1)

This integral has no known analytic solution and must therefore be solved numerically.

While exact analytic solutions cannot be found from Eq. (3.1.1), a common

method to find approximate solutions is to change the 5/3-power to a 2 [7, 15, 26,

53, 68, 88]. When the light source is a Gaussian beam, this quadratic approximation

has little effect on estimating the average beam size or radius of curvature [47,76], but

it may have a significant effect on the estimate of the beam’s coherence size. Assum-

ing a coherent source, comparisons between estimates of the coherence radius using

the quadratic approximation and that found by numerically integrating Eq. (3.1.1)

have demonstrated errors as high as 12% [1,8]. However, no references could be found

that make this comparison when the source is partially coherent.

An alternative method of estimating mutual coherence function (MCF) of partially

coherent beams as they travel through atmospheric turbulence is an extension of the

effective parameters method described in Sec. 2.4.2.2. In this method, it is assumed
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that a field after propagating a distance 𝐿 through turbulence can be modeled as

𝑈(𝝆, 𝐿) = 𝑈0(𝝆, 𝐿) exp [Ψ𝑆(𝝆, 𝐿)] exp [𝜓(𝝆, 𝐿)] , (3.1.2)

where 𝑈0(⋅) represents the field as it would be with a coherent source and no turbu-
lence, Ψ𝑆(⋅) is the complex phase perturbations due to the partial coherence of the
source, and 𝜓(⋅) is the complex phase perturbation due to atmospheric turbulence [2].
By further assuming the source perturbations and atmospheric perturbations are in-

dependent, the MCF of the field can be expressed as

Γ(𝝆1,𝝆2, 𝐿) = Γ𝑐(𝝆1,𝝆2, 𝐿)Γ𝑎(𝝆1,𝝆2, 𝐿), (3.1.3)

where Γ𝑐(⋅) is the MCF absent of atmospheric turbulence as found using Eq. (2.2.3),
and 𝑈0(𝝆1, 𝐿)𝑈

∗
0 (𝝆2, 𝐿)Γ𝑎(𝝆1,𝝆2, 𝐿) would be the MCF if the source was coherent as

found using the effective parameters method. While no references could be found

comparing the accuracy of this method to that of the quadratic approximation when

the source is partially coherent, it has been shown that this method is generally more

accurate when the source was coherent [1, 2].

3.2 Coupling of Random Fields into Single-mode Fibers

The coupling of an aberrated wavefront into a single-mode fiber was first exten-

sively studied by Wagner and Tomlinson [87]. However, their focus was on static

aberrations as well as fiber misalignments and fiber-mode mismatch.

This was followed by Shaklan and Roddier [79] who studied the effect of atmo-

spheric turbulence on the mean coupling efficiency and its fluctuations, defined as

the mean normalized standard deviation (std). Assuming weak atmospheric turbu-

lence, they demonstrated how the mean coupling efficiency decreases with increasing
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𝐷/𝑟0, where 𝐷 is the pupil diameter and 𝑟0 is the atmospheric coherence length of

Eq. (2.4.41). They also demonstrated through computer simulations that the coupling

efficiency fluctuations saturated at ∼ 1 for large 𝐷/𝑟0.

Winzer and Leeb [94] expressed the mean fiber coupling efficiency of random

fields when the complex degree of coherence as given by Eq. (2.2.2) can be expressed

as a Gaussian function. They demonstrated the dependence of the mean coupling

efficiency on the ratio between the receiver diameter and the coherence diameter.

This analysis also assumed a uniform average irradiance over the receiver aperture.

Ruilier and Cassaing [74,75] analyzed the coupling efficiency of light degraded by

weak atmospheric turbulence as decomposed into Zernike polynomials. By expressing

the coupling efficiency in terms of the Zernike polynomial coefficients, it was possi-

ble to derive approximate expressions for the mean coupling efficiency and coupling

fluctuations after some of the Zernike modes had been eliminated by use of adaptive

optics. However, as 𝐷/𝑟0 increased, the approximations began to deviate from the

simulations, particularly for the coupling fluctuations. As with [79], the coupling

fluctuations saturated near 1 for large 𝐷/𝑟0.

As many of the previous studies assumed the complex degree of coherence had

a Gaussian shape, Dikmelik and Davidson [23] compared the effect of a 5/3-power

law (as predicted by a Kolmogorov power spectrum) on the coupling efficiency to

that of a Gaussian. They demonstrated that the Gaussian approximation slightly

overestimates the true coupling efficiency when coherence area of the field on the

order of or larger than the receiver area, while it slightly underestimated the coupling

efficiency when the coherence area of the field as much smaller that the receiver

area. However, the two cases were very close across the entire range of values which

indicated the Gaussian degree of coherence was an excellent approximation of the

true degree of coherence.
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The expressions for the coupling efficiency as given in the previous papers all

required numerical evaluation. Chen et al. [17] derived an exact expression for the

coupling of a random plane wave with a Gaussian complex degree of coherence into

an annular-aperture receiver. This expression involves an infinite sum of confluent

hypergeometric functions, so while it does aid further analysis in some cases, it can

be cumbersome in other situations. This is particularly the case when the coherence

size of the field is small with respect to the receiver.

All of these studies assumed the average intensity was constant across the receiver

aperture. While this may frequently be the case, this cannot always be assumed

for Gaussian Schell-model (GSM) beams. They also all assumed that any amplitude

fluctuations of the field were negligible. This may be true for coherent sources in weak

turbulence, but it is not true for partially coherent sources or strong turbulence. As

a result further study was required to better understand the coupling of GSM beams

into single-mode optical fibers.

3.3 SRI Performance

The SRI was initially developed due to its theoretical insensitivity to scintillation

[6]. This insensitivity is due to its measurements comprising linear combinations of

the complex field, so its average estimation accuracy is governed by the statistics of

the complex field. Since the statistics of the complex field are defined by the MCF,

and the MCF does not functionally depend on the scintillation index, its measurement

accuracy must also be independent of scintillation [5]. Neglecting other error sources,

its performance is only limited by the size of the subapertures with respect to 𝑟0

and the coherence time of the light with respect to the detector integration time.

Simulations have demonstrated this invariance to scintillation and dependence on

subaperture size [6, 25].
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In contrast to noise-free simulations, real-world implementations of an SRI have

demonstrated a susceptibility to scintillation [19,60]. This susceptibility is likely due

not only to measurement noise (such as shot noise, read noise, and quantization noise),

but also to changes in the amount of power coupled into the single-mode fiber [23,83].

While work has been done to analyze the noise characteristics of the SRI accounting

for shot noise, read noise, quantization noise, and amplified spontaneous emission

(ASE), it assumed no scintillation [66]. This study also only analyzed the effect of

these noise sources on the full field estimation error instead of the phase estimation

error. The only analytic model that directly addressed how scintillation along with

shot noise affects the phase estimation error of an SRI is by Ellis [25]. However,

this analysis disregards fiber coupling variations and the other additive noise sources.

This indicated there still existed a need for an SRI noise model that takes all of these

noise sources into account. Additionally, no study had yet been performed analyzing

the use of non-point sources, nor the effects of the partial temporal coherence of the

incident light.
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IV. GSM Beams in Atmospheric Turbulence

4.1 Introduction

Random variations in the index of refraction of the atmosphere have a direct

impact on the degree of coherence of any electromagnetic wave that traverses it [82].

While much literature has been produced describing the nature of this effect on light in

a variety of conditions, analytic expressions for the coherence function of the light are

either approximations or of limited applicability. While exact solutions to the relevant

propagation equations do exist under certain conditions, such as weak turbulence

or separation distances much smaller than the inner scale of the turbulence, these

equations are intractable in the inertial subrange of atmospheric turbulence where

separation distances fall between the turbulence inner and outer scales [2]. Since

this is the region of interest for many practical applications, solutions in these cases

require either simplifying approximations or numerical evaluation.

One particular example deals with the coupling of atmospherically perturbed light

into single-mode mode optical fibers. Optical fibers are used in this manner in many

fields, such as free-space optical communications, ladar/lidar, stellar interferometry,

and adaptive optics [23,45,55,65,75,79,83,90,94]. When the coherence radius of the

light is much smaller than the receiver aperture radius, the average coupling efficiency

is directly proportional to the square of the coherence length of the incident light [91].

This means that any error in estimating the coherence radius of the light is at least

doubled when estimating the average optical fiber coupling efficiency. Since some

methods for estimating the coherence radius have been shown to have errors as large

as 12% [8], it is important to understand which method has the best accuracy for a

given condition.

For the purpose of this study, the light source was considered to be a Gaussian
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Schell-model (GSM) beam [57]. GSM beams have been extensively used as source

models in the literature due to their analytic convenience and their broad applicability

[24, 26, 37, 47, 49, 53, 68, 80, 88, 97]. They are analytically simple in that their second-

order statistics, as described by their mutual coherence function (MCF), are expressed

entirely in terms of Gaussian functions. They can also be used to model any source

size from a point source to a plane wave, and any degree of spatial coherence from

incoherent to fully coherent. This study was also limited to the case where scalar

diffraction theory holds [39]. This is case as long as the source is either linearly

polarized, or it is unpolarized and the orthogonal components of the field tangential

to the direction of propagation are statistically identical [50].

This chapter is organized as follows. Section 4.2 establishes the theoretic founda-

tion used in this study. It also discuss the two primary methods for estimating the

beam coherence function: the quadratic approximation and effective beam parame-

ters. A third method to estimate the coherence function is then introduced whereby

the effective parameters are modified according to the full results of the quadratic

approximation. Section 4.3 compares the accuracy of the three estimation methods

throughout the relevant parameter space. Numerically evaluated results from the

MCF propagation equation form the basis of this comparison. The parameter space

is divided into three general regions, and the best estimation method and maximum

error are given for each region. Section 4.4 then compares the the shape of the coher-

ence function to that given by each approximation method throughout the parameter

space. A summary of the main results and concluding remarks are given in Sec. 4.6.

4.2 Theoretical Foundation

This section forms the basis from which the various estimation methods are eval-

uated. For a scalar component of a random optical field 𝐸 located a distance 𝐿

67



from the source, the MCF of the field in a plane perpendicular to the direction of

propagation can be defined as

Γ(𝝆1,𝝆2, 𝐿) = ⟨𝐸(𝝆1, 𝐿)𝐸∗(𝝆2, 𝐿)⟩ , (4.2.1)

where 𝝆 is the two-dimensional coordinate vector in the plane perpendicular to the

direction of propagation, the asterisk represents the complex conjugate, and the brack-

ets represent ensemble averaging 1. If the source is considered to be a GSM beam,

its MCF can be expressed as

Γ(𝝆1,𝝆2, 0) = exp

[
−∣𝝆1∣

2 + ∣𝝆2∣2
𝑤20

− ∣𝝆1 − 𝝆2∣2
𝑙2𝑐

− j𝑘

2𝐹0

(∣𝝆1∣2 − ∣𝝆2∣2)
]
, (4.2.2)

where 𝑤0 is the source radius, 𝑙𝑐 is the source coherence radius, 𝐹0 is the source

radius of curvature (negative for a diverging beam, positive for a converging beam,

and infinite for a collimated beam), j =
√−1, and 𝑘 = 2𝜋/𝜆 where 𝜆 is the wavelength

of the light [57].

The coherence function of a random field is defined in terms of its MCF as 2

∣𝜇(𝝆1,𝝆2, 𝐿)∣ =
∣Γ(𝝆1,𝝆2, 𝐿)∣

[Γ(𝝆1,𝝆1, 𝐿)Γ(𝝆2,𝝆2, 𝐿)]
1/2

. (4.2.3)

Inserting Eq. (5.2.10) into Eq. (4.2.3) gives the coherence function of a GSM source

1Since the fields used to calculate Γ are always taken at the same instant in time, it can al-
ternatively be referred to as the mutual intensity 𝐽 instead of the MCF [38, 41, 57]. However, to
maintain consistency with other published literature [2, 23, 49], it is referred to here as the MCF.
Consequently, the time dependence of the field 𝐸 is ignored.

2This relationship is often referred to as the modulus of the complex degree of coherence [2] or
the modulus of the complex coherence factor [38]. It is referred to here as the coherence function to
emphasize its functional relationship.
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which can be expressed as

∣𝜇(𝝆1,𝝆2, 0)∣ = exp

(
−∣𝝆1 − 𝝆2∣2

𝑙2𝑐

)
. (4.2.4)

Since the coherence function depends only on the distance between two points in the

field, and not the locations of the points themselves, the field is coherently homoge-

neous. The coherence radius 𝑙𝑐 is then seen to be the separation distance where the

coherence function falls to the value e−1.

While several methods have been proposed to describe the propagation of scalar

electromagnetic fields through atmospheric turbulence [12, 21, 22, 27, 35, 53, 54, 93],

they have all been shown to be equivalent to the second-order moment of the field

under commonly used assumptions [13]. Assuming isotropic turbulence, the MCF

propagation equation can be expressed in integral form as

Γ(𝝆1,𝝆2, 𝐿) =
1

(𝜆𝐿)2

∫∫
𝒮

∫∫
𝒮

d2𝝆′
1 d
2𝝆′
2Γ(𝝆

′
1,𝝆

′
2, 0) exp

[
j𝑘

2𝐿

(
∣𝝆1 − 𝝆′

1∣2 − ∣𝝆2 − 𝝆′
2∣2
)]

× exp
(
−4𝜋2𝑘2𝐿

∫ 1

0

d𝑡

∫ ∞

0

d𝜅 𝜅Φ𝑛(𝜅) {1− 𝐽0 [∣𝑡(𝝆′
1 − 𝝆′

2)

+(1− 𝑡)(𝝆1 − 𝝆2)∣𝜅]}) , (4.2.5)

where
∫∫

𝒮
represent integration over the entire source plane, Φ𝑛(⋅) is the spectral

density of the index-of-refraction fluctuations in the atmospheric path, and 𝐽0(⋅) is
the zero-order Bessel function of the first kind [100]. Since this study focuses on the

inertial subrange, the Kolmogorov spectral density is used given by

Φ𝑛(𝜅) = 0.033𝐶2𝑛𝜅
−11/3, (4.2.6)

where 𝐶2𝑛 is the refractive-index structure constant (units of m
−2/3) [48]. Following

the procedure outlined in Ishimaru [43, Chap. 20], the substitutions 𝝆𝑠 = (𝝆1+𝝆2)/2,
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𝝆𝑑 = 𝝆1 − 𝝆2, 𝝆
′
𝑠 = (𝝆′

1 + 𝝆′
2)/2, 𝝆

′
𝑑 = 𝝆′

1 − 𝝆′
2, and 𝒖 = 𝑘(𝝆𝑑 − 𝝆′

𝑑)/𝐿 are used to

simplify the notation aid in the evaluation of Eq. (4.2.5). Using the GSM source MCF

of Eq. (5.2.10) and assuming a constant 𝐶2𝑛 along the propagation path, Eq. (4.2.5)

can be simplified to

Γ (𝝆𝑠,𝝆𝑑, 𝐿) =
𝑤20
8𝜋

∫∫
𝒰

d2𝒖 exp

[
− 𝐴 ∣𝝆𝑑∣2 − 𝐵 ∣𝒖∣2 + (𝐶𝝆𝑑 + j𝝆𝑠) ⋅ 𝒖

− 1

𝜌
5/3
𝑝

∫ 1

0

d𝑡

∣∣∣∣𝝆𝑑 − 𝐿𝑡

𝑘
𝒖

∣∣∣∣
5/3
]
, (4.2.7)

where

𝐴 =
1

2𝑤20
+
1

𝑙2𝑐
+
𝑘2𝑤20
8𝐹 20

,

𝐵 =
𝐿2

2𝑘2𝑤20
+

𝐿2

𝑘2𝑙2𝑐
+
𝑤20
8

(
1− 𝐿

𝐹0

)2
,

𝐶 =
𝐿

𝑘𝑤20
+
2𝐿

𝑘𝑙2𝑐
− 𝑘𝑤20
4𝐹0

(
1− 𝐿

𝐹0

)
,

and 𝜌𝑝 = (1.46𝐶2𝑛𝑘
2𝐿)−3/5 is the coherence radius of a plane wave traveling through

the turbulence [2].

While Eq. (4.2.7), known as the parabolic equation [1, 43], sufficiently defines

the propagation of GSM beams through atmospheric turbulence, it is convenient to

express it in terms of the non-dimensional parameters

Θ0 = 1− 𝐿

𝐹0
, Λ0 =

2𝐿

𝑘𝑤20
, 𝑞𝑐 =

𝐿

𝑘𝑙2𝑐
, and 𝑞 =

𝐿

𝑘𝜌2𝑝
, (4.2.8)

where Θ0 is often referred to as source curvature parameter (greater than one for a

diverging beam, less than one for a converging beam, and equal to one for a collimated

beam), Λ0 is the Fresnel ratio (equals zero for a plane wave and is infinite for a point

source), 𝑞𝑐 is a measure of the incoherence of the source (equals zero for a perfectly
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coherent source), and 𝑞 is a measure of the strength of atmospheric turbulence (it is

related to the Rytov number with 𝑞 = 19.2ℛ6/5). With the additional normalizations

of �̃�𝑠 = 𝝆𝑠/𝜌𝑝, �̃�𝑑 = 𝝆𝑑/𝜌𝑝, and �̃� = 𝜌𝑝𝒖, the parabolic equation becomes

Γ (�̃�𝑠, �̃�𝑑, 𝐿) =
𝑞

4𝜋Λ0

∫∫
𝒰

d2�̃� exp
[
−𝐴 ∣�̃�𝑑∣2 − �̃� ∣�̃�∣2

+ (𝐶�̃�𝑑 + j�̃�𝑠) ⋅ �̃�−
∫ 1

0

d𝑡 ∣�̃�𝑑 − 𝑡𝑞�̃�∣5/3
]
, (4.2.9)

where

𝐴 =
1

4𝑞Λ0

[
(1−Θ0)2 + Λ20 + 4𝑞𝑐Λ0

]
,

�̃� =
𝑞

4Λ0

(
Θ20 + Λ

2
0 + 4𝑞𝑐Λ0

)
,

𝐶 =
1

2Λ0

(
Θ20 + Λ

2
0 −Θ0 + 4𝑞𝑐Λ0

)
.

This expression demonstrates how the four non-dimensional parameters in (4.2.8)

completely characterize the propagation of GSM beams through the atmosphere.

4.2.1 Quadratic Approximation.

Since an analytic evaluation of the integral with respect to 𝑡 in Eq. (4.2.9) has

yet to be found, solutions must be determined either through numeric integration

or simplifying approximations. The most common simplification is known as the

quadratic approximation, whereby the 5/3 power is replaced with a 2 [7,15,26,53,68,

88]. Since this approximation plays an important part in all further derivations, its
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procedure and results are briefly reviewed here. As such, Eq. (4.2.9) is modified to

Γ (�̃�𝑠, �̃�𝑑, 𝐿) =
𝑞

4𝜋Λ0

∫∫
𝒰

d2�̃� exp
[
−𝐴 ∣�̃�𝑑∣2 − �̃� ∣�̃�∣2

+(𝐶�̃�𝑑 + j�̃�𝑠) ⋅ �̃�− 3𝛼
∫ 1

0

d𝑡 ∣�̃�𝑑 − 𝑡𝑞�̃�∣2
]
, (4.2.10)

where 𝛼 allows for partial compensation of this approximation. All the integrals

can now be analytically evaluated, and the MCF expressed in terms of the original

coordinates 𝝆1 = 𝜌𝑝(�̃�𝑠 + �̃�𝑑/2) and 𝝆2 = 𝜌𝑝(�̃�𝑠 − �̃�𝑑/2) as

Γ(𝝆1,𝝆2, 𝐿) =
𝑤20
𝑤2𝑞

exp

[
−∣𝝆1∣

2 + ∣𝝆2∣2
𝑤2𝑞

− ∣𝝆1 − 𝝆2∣2
𝜌2𝑞

− j𝑘

2𝐹𝑞

(∣𝝆1∣2 − ∣𝝆2∣2)
]
, (4.2.11)

where

𝑤𝑞 =𝑤0
[
Θ20 + Λ

2
0 + 4(𝑞𝑐 + 𝛼𝑞)Λ0

]1/2
, (4.2.12)

𝜌𝑞 =𝜌𝑝

{
𝑞 [Θ20 + Λ

2
0 + 4(𝑞𝑐 + 𝛼𝑞)Λ0]

𝑞𝑐(1 + 4𝛼𝑞Λ0) + 𝛼𝑞(1 + Θ20 + Λ
2
0 +Θ0 + 3𝛼𝑞Λ0)

}1/2
, (4.2.13)

and

𝐹𝑞 =
−𝐿 [Θ20 + Λ20 + 4(𝑞𝑐 + 𝛼𝑞)Λ0]

Θ20 + Λ
2
0 −Θ0 + 2(2𝑞𝑐 + 3𝛼𝑞)Λ0

. (4.2.14)

Since Eq. (4.2.11) is in the same form as Eq. (5.2.10), the quadratic approximation

maintains a GSM beam, but with new beam parameters 𝑤𝑞, 𝜌𝑞, and 𝐹𝑞. The resulting

coherence function is thus easily found to be

∣𝜇𝑞(𝝆1,𝝆2, 𝐿)∣ = exp

(
−∣𝝆1 − 𝝆2∣2

𝜌2𝑞

)
. (4.2.15)

The accuracy of the quadratic approximation varies depending on values of Θ0,
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Λ0, 𝑞𝑐, 𝑞, and 𝛼. In the case of a coherent plane wave as the source (Θ0 = 1,

Λ0 = 0, and 𝑞𝑐 = 0), using 𝛼 = 1/3 gives the correct values of 𝑤𝑞 = 𝑤0 = ∞,
𝜌𝑞 = 𝜌𝑝, and 𝐹𝑞 = ∞. The only error is in the shape of the coherence function

where the power in the exponential should be 5/3 instead of 2 [2]. Using a coherent

source (𝑞𝑐 = 0), comparisons performed by Belen’kĭı and Mironov [8] between the

coherence radius given by the Eq. (4.2.13) with 𝛼 = 1/3 and that derived though the

numerical integration of Eq. (4.2.7) demonstrated that Eq. (4.2.13) underestimates

the true coherence radius in all cases, except for a plane wave source, with a maximum

deviation of about 12%.

The overall accuracy of 𝜌𝑞 can be improved by using the value of 𝛼 = (3/8)6/5

which results in the correct values for a point source (Θ0 → ∞ and Λ0 → ∞ while

Θ0/Λ0 remains finite) of 𝑤𝑞 =∞, 𝐹𝑞 = −𝐿, and 𝜌𝑞 = (8/3)3/5𝜌𝑝. For coherent sources

(𝑞𝑐 = 0), this value of 𝛼 increases all estimates of the coherence radius by nearly 4%

over that of 𝛼 = 1/3, thereby reducing the maximum error to about 8%. For this

reason, 𝛼 = (3/8)6/5 was used to define the quadratic approximation coherence radius

estimate in this study.

4.2.2 Effective Parameters.

An alternative method for calculating the MCF of a GSM beam after propagation

through the atmosphere is to assume the field at the receiver can be represented as

𝐸(𝝆, 𝐿) = 𝐸0(𝝆, 𝐿) exp [Ψ𝑆(𝝆, 𝐿)] exp [𝜓(𝝆, 𝐿)] , (4.2.16)

where 𝐸0(⋅) represents the field at the receiver of an equivalent coherent source in the
absence of turbulence, Ψ𝑆(⋅) represents the complex phase perturbation due to the
partial coherence of the source, and 𝜓(⋅) represents the complex phase perturbation
due to atmospheric turbulence [2]. By assuming the the complex phase perturbations
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due to the source and atmosphere are statistically independent of each other, the

MCF of the field can be expressed as

Γ(𝝆1,𝝆2, 𝐿) = Γ𝑐(𝝆1,𝝆2, 𝐿)Γ𝑎(𝝆1,𝝆2, 𝐿), (4.2.17)

where Γ𝑐(⋅) is the MCF of the GSM beam through free space and Γ𝑎(⋅) is the MCF of
an equivalent coherent beam through the atmosphere. In the absence of atmospheric

turbulence, the coherence function of a GSM beam can be derived directly from

Eqs. (4.2.13) and (4.2.15) by allowing 𝜌𝑝 → ∞, and correspondingly 𝑞 → 0. It can

then be expressed as

∣𝜇𝑐(𝝆1,𝝆2, 𝐿)∣ = exp

(
−∣𝝆1 − 𝝆2∣2

𝜌2𝑐

)
, (4.2.18)

where

𝜌𝑐 = 𝑙𝑐
(
Θ20 + Λ

2
0 + 4𝑞𝑐Λ0

)1/2
. (4.2.19)

When deriving the coherence function due to turbulence alone, a method based

on the Rytov approximation has been shown to be more accurate at times than that

derived from the quadratic approximation [1]. As the details of the Rytov approxi-

mation are readily available elsewhere [2,77], only the relevant results are given here.

According to the Rytov approximation, the coherence function of a coherent Gaussian

beam after propagating through atmospheric turbulence can be expressed as [2]

∣𝜇𝑅(𝝆1,𝝆2, 𝐿)∣ = exp

{
−3
8

[
𝑎

( ∣𝝆1 − 𝝆2∣
𝜌𝑝

)5/3
+ 0.618

Λ11/6

𝑞1/6

( ∣𝝆1 − 𝝆2∣
𝜌𝑝

)2]}
,

(4.2.20)
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where

𝑎 =

⎧⎨
⎩

1−Θ8/3
1−Θ for Θ ≥ 0

1 + ∣Θ∣8/3
1−Θ for Θ < 0

, Θ = 1 +
𝐿

𝐹
, Λ =

2𝐿

𝑘𝑤2
, (4.2.21)

and 𝑤 and 𝐹 are derived from Eqs. (4.2.12) and (4.2.14) respectively by setting

𝑞𝑐 = 𝑞 = 0. Not only does Eq. (4.2.20) give the correct values for the coherence

radius using both a coherent plane wave source (Θ = 1 and Λ = 0) and a point source

(Θ = Λ = 0), but also the correct coherence function shape.

While the Rytov approximation is very accurate in weak turbulence (𝑞 < 1 and

𝑞Λ < 1) [2] it becomes less accurate as the turbulence strength increases. In strong

turbulence and with coherent sources, the quadratic approximation has been shown to

be more accurate at estimating the coherence radius than the Rytov approximation

[1]. To remedy this situation, Andrews et al. [1] heuristically introduced effective

beam parameters that take into account the additional beam spreading and reduced

radius of curvature evident in strong turbulence. This is accomplished by replacing

Θ and Λ in Eqs. (4.2.20) and (4.2.21) with

Θ𝑎 = 1 +
𝐿

𝐹𝑎
, Λ𝑎 =

2𝐿

𝑘𝑤2𝑎
, (4.2.22)

where 𝑤𝑎 and 𝐹𝑎 can be derived from Eqs. (4.2.12) and (4.2.14) respectively by setting

𝑞𝑐 = 0 and 𝛼 = 1/3. (While 𝛼 = (3/8)6/5 could be used instead, the difference is

minimal so 𝛼 = 1/3 is used to maintain consistency with previous work [1, 2].) With

this change, Eq. (4.2.20) becomes

∣𝜇𝑎(𝝆1,𝝆2, 𝐿)∣ = exp

{
−3
8

[
𝑎𝑎

( ∣𝝆1 − 𝝆2∣
𝜌𝑝

)5/3
+ 0.618

Λ
11/6
𝑎

𝑞1/6

( ∣𝝆1 − 𝝆2∣
𝜌𝑝

)2]}
,

(4.2.23)
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where

𝑎𝑎 =

⎧⎨
⎩

1−Θ8/3𝑎
1−Θ𝑎 for Θ𝑎 ≥ 0,

1 + ∣Θ𝑎∣8/3
1−Θ𝑎 for Θ𝑎 < 0.

(4.2.24)

The overall coherence function can now be found by multiplying together Eqs. (4.2.18)

and (4.2.23), and expressed as

∣𝜇𝑒(𝝆1,𝝆2, 𝐿)∣ = exp

[
−
( ∣𝝆1 − 𝝆2∣

𝜌𝑎

)5/3
−
( ∣𝝆1 − 𝝆2∣

𝜌′𝑐

)2]
, (4.2.25)

where

𝜌𝑎 = 𝜌𝑝

(
8

3𝑎𝑎

)3/5
(4.2.26)

and

𝜌′𝑐 = 𝜌𝑝

[
𝑞𝑐

𝑞(Θ20 + Λ
2
0 + 4𝑞𝑐Λ0)

+ 0.232
Λ
11/6
𝑎

𝑞1/6

]−1/2
. (4.2.27)

Finding the e−1 point of Eq. (4.2.25) requires finding the real and positive root of a

sixth-order polynomial, so there is no direct algebraic expression for the coherence

radius. However, the coherence radius can be approximated as [2]

𝜌𝑒 = 𝜌𝑝

[
𝑞𝑐

𝑞(Θ20 + Λ
2
0 + 4𝑞𝑐Λ0)

+ 0.232
Λ
11/6
𝑎

𝑞1/6
+

(
3𝑎𝑎
8

)6/5]−1/2
. (4.2.28)

This approximation has its largest error of 3.53% when 𝜌′𝑐/𝜌𝑎 = 0.75, and the error

is less than 1% when 𝜌′𝑐/𝜌𝑎 < 0.15 or 𝜌′𝑐/𝜌𝑎 > 2.88. While the exact coherence

length found from Eq. (4.2.25) was primarily used in this study, the effects of the

approximation given by Eq. (4.2.28) were also evaluated.

4.2.3 Modified Effective Parameters.

The new method presented here of estimating the coherence function of GSM

beams in turbulence analyzed by this study combines elements from both the quadratic
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approximation and the effective parameters method. While the coherence function

is formed in the same manner as in Sec. 4.2.2, the MCF due to the atmosphere is

not considered completely independent from the source coherence. Instead, coupling

effects between the source and atmosphere are included by modifying the effective pa-

rameters of Eq. (4.2.22) such that beam width and radius of curvature are precisely

those given by the quadratic approximation. The resulting coherence function is

∣𝜇𝑚(𝝆1,𝝆2, 𝐿)∣ = exp

{
−3𝑎𝑞
8

( ∣𝝆1 − 𝝆2∣
𝜌𝑝

)5/3

−
[

𝑞𝑐
𝑞(Θ20 + Λ

2
0 + 4𝑞𝑐Λ0)

+ 0.232
Λ
11/6
𝑞

𝑞1/6

]( ∣𝝆1 − 𝝆2∣
𝜌𝑝

)2}
, (4.2.29)

where

𝑎𝑞 =

⎧⎨
⎩

1−Θ8/3𝑞
1−Θ𝑞 for Θ𝑞 ≥ 0

1 + ∣Θ𝑞∣8/3
1−Θ𝑞 for Θ𝑞 < 0

, Θ𝑞 = 1 +
𝐿

𝐹𝑞
, Λ𝑞 =

2𝐿

𝑘𝑤2𝑞
. (4.2.30)

While either 𝛼 = 1/3 or 𝛼 = (3/8)6/5 could be used to define 𝑤𝑞 and 𝐹𝑞 with

Eqs. (4.2.12) and (4.2.14), this study used the former to maintain consistency with

Sec. 4.2.2. As before, the coherence radius can be approximated with

𝜌𝑚 = 𝜌𝑝

[
𝑞𝑐

𝑞(Θ20 + Λ
2
0 + 4𝑞𝑐Λ0)

+ 0.232
Λ
11/6
𝑞

𝑞1/6
+

(
3𝑎𝑞
8

)6/5]−1/2
. (4.2.31)

In the case of a perfectly coherent source when 𝑞𝑐 = 0, the modified effective param-

eters method is equivalent to the effective parameters method.
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4.3 Coherence Radius Accuracy

The relative accuracy of the different methods of estimating the coherence radius

of GSM beams in turbulence were evaluated throughout the parameter space defined

by Eq. (4.2.8). To simplify the analysis, this four-dimensional parameter space was

reduced to three dimensions by assuming a collimated source (Θ0 = 1). This assump-

tion was justified by observing Θ0 primarily appears as additive terms in the above

expressions for the coherence length, so the primary interplay is among parameters

Λ0, 𝑞𝑐, and 𝑞.

An analytic estimation of the coherence function based on the numerical integra-

tion of Eq. (4.2.9) was used to assess the relative accuracy of each estimation method.

Since all of the expressions for the coherence function in Sec. 4.2 are coherently homo-

geneous, it can be evaluated by setting 𝝆1 = 𝝆 and 𝝆2 = 0. The coherence function

at distance 𝐿 can now be expressed in terms of the displacement distance 𝜌 = ∣𝝆∣ as

∣𝜇(𝜌, 𝐿)∣ = ∣Γ(𝝆, 0, 𝐿)∣
[Γ(𝝆,𝝆, 𝐿)Γ(0, 0, 𝐿)]1/2

. (4.3.1)

Samples of Eq. (4.3.1) were computed using Listing C.4 by numerically evaluating

Eq. (4.2.9) when �̃�𝑠 = �̃�𝑑/2 = 𝝆/(2𝜌𝑝), and when �̃�𝑠 = 𝝆/𝜌𝑝 with �̃�𝑑 = 0. The ana-

lytic estimation of the coherence function was then determined by making a nonlinear

least-squares fit of the sample data points to

∣𝜇(𝜌)∣ = exp

[
−
(
𝜌

𝜌0

)𝑛]
, (4.3.2)

where 𝜌0 and 𝑛 are the fit parameters. In this study, the fit was made using 12 evenly

spaced sample points from 0 to 1.1𝜌𝑚 inclusive.

The differences between the absolute errors of the various methods of estimating

the coherence radius with respect to 𝜌0 are shown in Fig. 6. The four Λ0 values of

78



100 101 102 103
−20

−15

−10

−5

0

5

10

15
Λ0 = 0.001

q = L/(kρ2

p)

di
ff

 in
 a

bs
 e

rr
or

 [%
]

100 101 102 103
−20

−15

−10

−5

0

5

10

15
Λ0 = 0.1

q = L/(kρ2

p)
di

ff
 in

 a
bs

 e
rr

or
 [%

]

100 101 102 103
−20

−15

−10

−5

0

5

10

15
Λ0 = 10

q = L/(kρ2

p)

di
ff

 in
 a

bs
 e

rr
or

 [%
]

100 101 102 103
−20

−15

−10

−5

0

5

10

15
Λ0 = 1000

q = L/(kρ2

p)

di
ff

 in
 a

bs
 e

rr
or

 [%
]

qc = 0

qc = 1000

qc = 1000

qc = 0

qc = 1000
qc = 1000

qc = 0

qc = 0

Figure 6. The difference in the absolute error between various methods of estimating
the coherence radius. Lines are for the 𝑞𝑐 values of 0, 0.001, 0.01, 0.1, 1, 10, 100,
and 1000. The solid lines are the difference between the absolute error using effective
parameters as given in Eq. (4.2.25) and using modified effective parameters as given in
Eq. (4.2.29). The dotted lines are the difference between the absolute error using the
quadratic approximation as given in Eq. (4.2.13) and using modified effective parame-
ters as given in Eq. (4.2.29). The difference is positive when using modified effective
parameters is more accurate, and negative when using modified effective parameters is
less accurate.
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0.001, 0.1, 10, and 1000 are shown along with the 𝑞𝑐 values of 0, 0.001, 0.01, 0.1, 1,

10, 100, and 1000. (Note that a range in 𝑞 from 1 to 1000 corresponds to a range in

ℛ from 0.085 to 26.) Absolute error is defined as

err𝑥 = 100

∣∣∣∣𝜌𝑥𝜌0 − 1
∣∣∣∣ , (4.3.3)

where 𝑥 is 𝑞, 𝑒, or 𝑚 and the coherence radii are defined respectively by Eqs. (4.2.13),

(4.2.25), and (4.2.29). Solid lines indicate the difference in absolute error between

the effective parameters method of Eq. (4.2.25) and the modified effective parameters

method of Eq. (4.2.29), while dotted lines indicate the difference in absolute error

between the quadratic approximation method of Eq. (4.2.13) and the modified ef-

fective parameters method of Eq. (4.2.29). Positive values occur when the modified

effective parameters method is more accurate, and negative values occur when it is

less accurate.

According to these plots, the parameters space can be divided into three general

regions: 𝑞Λ0 < 0.1, 0.1 < 𝑞Λ0 < 10, and 𝑞Λ0 > 10. In the transitory region of

0.1 < 𝑞Λ0 < 10, the quadratic approximation tends give the most accurate estimate

with the best performance advantage when the source is nearly coherent. For a

perfectly coherent source (𝑞𝑐 = 0), the quadratic approximation is up to 18.9% more

accurate than the other methods in this region, but as the source coherence decreases

this performance advantage also decreases. Once the value of 𝑞𝑐Λ0 becomes larger

than 1, the modified effective parameter method actually tends to do better than

the quadratic approximation in this region with a performance advantage as high as

3.3%. While there are instances in this region where the effective parameters method

outperforms the other two, this performance advantage is transitory and of very small

magnitude (< 1%).

In the other two regions of weak turbulence and/or plane wave-like source (𝑞Λ0 <
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0.1), and strong turbulence and/or point-like source (𝑞Λ0 > 10), the modified effective

parameters method tends to be the most accurate. Since there is no difference be-

tween the effective parameters method and the modified effective parameters method

for a perfectly coherent source, the modified effective parameters method is seen to

have the greatest advantage when the source is very incoherent (high 𝑞𝑐). While

the modified effective parameters method can be more accurate than the effective

parameters method by as much as 15.5%, it tends to only outperform the quadratic

approximation to within 5%, with a maximum advantage of 6.35%. While there are

instances in these regions where either the quadratic approximation or effective pa-

rameters method has the best accuracy, the performance advantage is only transitory

and of very small magnitude (< 1%).

While Fig. 6 compares the difference in absolute error between the various coher-

ence radius estimation methods, Fig. 7 compares the absolute errors directly. Since

the effective parameters method tends to be less accurate than the other methods

across the parameter space, its absolute error is not shown. Figure 7 indicates that

by choosing the appropriate method to estimate the coherence radius, the error can

normally be kept to under 5%. When 𝑞Λ0 < 0.1 (weak turbulence and/or plane

wave-like source), the quadratic approximation has its maximum absolute error of

5.5% with weak turbulence and moderate source coherence (small 𝑞 and 𝑞𝑐 = 1).

However, the modified effective parameters method keeps its absolute error under

1.7% with the maximum error occurring with strong turbulence and coherent source

(large 𝑞 and 𝑞𝑐 = 0). In the transitory region of 0.1 < 𝑞Λ0 < 10, the modified effective

parameters method has an error as large as 21.5% for a coherent source, but as the

source coherence decreases the maximum error is reduced to 3.35%. Conversely the

quadratic approximation has its largest error of 5.2% in strong turbulence (large 𝑞)

with a coherent source. When 𝑞Λ0 > 10 (strong turbulence and/or point-like source),
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Figure 7. The absolute error of different methods of estimating the coherence radius.
Lines are for the 𝑞𝑐 values of 0, 0.001, 0.01, 0.1, 1, 10, 100, and 1000. The solid lines are
the absolute error of the modified effective parameters method given by Eq. (4.2.29),
and the dotted lines are the absolute error of the quadratic approximation given by
Eq. (4.2.13).
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the modified effective parameters method has a maximum error of 7.0% while the

quadratic approximation has a maximum error of 8.2%. In both cases this occurs

with strong turbulence and a coherent source, with the maximum error decreasing as

the source coherence decreases.

Since Eqs. (4.2.28) and (4.2.31) will normally be used to calculate the coherence

radius, it is important to evaluate their relative accuracy as well. The comparison of

difference in absolute errors using theses approximate expressions for the coherence

radius is shown in Fig. 8. While using the approximate expressions does not appre-

ciably change the results when 𝑞Λ0 > 10 (strong turbulence and/or point-like source),

they do have an effect on the other two regions. When 𝑞Λ0 < 0.1 and 𝑞𝑐Λ0 < 0.1

(plane wave-like and nearly coherent source with weak turbulence), the effective pa-

rameters method now beats the modified effective parameters method by as much as

2.8%. As the source coherence decreases, the effective parameters method continues

to beat the modified parameters method for weak turbulence, but starts to lose out

at stronger turbulence values. In the transitory region, the quadratic approximation

is now seen to be more accurate than the modified effective parameters method at

source coherence values.

4.4 Coherence Function Shape

The final piece of analysis deals with the accuracy of the overall coherence func-

tion shape. The quadratic approximation produces a Gaussian coherence function

while both of the effective parameter methods result in coherence functions that are

the product of a Gaussian and the exponential of a 5/3 power. As a result, the ef-

fective shape of the coherence function should fall somewhere in between the two.

Figure 9 contains plots of 𝑛 when the numerically derived coherence function, as well

as Eqs. (4.2.25) and (4.2.29), are fit to Eq. (4.3.2). As before, the lines represent the
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Figure 8. The difference in the absolute error between various methods of estimating
the coherence radius. Lines are for the 𝑞𝑐 values of 0, 0.001, 0.01, 0.1, 1, 10, 100, and
1000. The solid lines are the difference between the absolute error using the effective
parameters approximate expression as given in Eq. (4.2.28) and using modified effective
parameters approximate expression as given in Eq. (4.2.31). The dotted lines are the
difference between the absolute error using the quadratic approximation as given in
Eq. (4.2.13) and using modified effective parameters approximate expression as given
in Eq. (4.2.31). The difference is positive when using modified effective parameters is
more accurate, and negative when using modified effective parameters is less accurate.
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𝑞𝑐 values of 0, 0.001, 0.01, 0.1, 1, 10, 100, and 1000. The solid lines are the fit of

the numerically derived coherence function, the dash-dotted lines are the fit of the

modified effective parameters result given by Eq. (4.2.29), and the dotted lines are

the fit of the effective parameters result given by Eq. (4.2.25).

In every instance, the numerically derived coherence function is more Gaussian

in shape than predicted by either of the effective parameters methods. The best

agreement is when 𝑞 is small and 𝑞𝑐 is large (weak turbulence and incoherent source).

This should be expected since this is case where the integral over 𝑡 in Eq. (4.2.9) has

the smallest impact. However, as the turbulence strength increases, the numerically

derived coherence function becomes more Gaussian, while both of the effective pa-

rameters coherence functions become less Gaussian. In fact once 𝑞Λ0 becomes larger

than 1, the coherence function for more coherent sources is more Gaussian than the

coherence function for less coherent sources. When the source is plane wave-like and

coherent while the turbulence is strong, the quadratic approximation actually better

estimates the the coherence function shape than either of the effective parameters

methods. With very strong turbulence, the shape of the numerically derived coher-

ence function tends toward 9/5 rather than 5/3 as predicted by both of the effective

parameters methods. While the coherence function shapes of both effective param-

eters methods are very similar to each other across the entire parameter space, the

modified method tends to slightly better agree with the numerically derived results.

For analytic convenience, the coherence function of atmospherically perturbed light is

sometimes approximated by a Gaussian shape [23]. These results indicate that such

an approximation may be more accurate than would have been otherwise expected.
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Figure 9. Comparison of the exponential power 𝑛 as different methods of estimating the
coherence function are fit to Eq. (4.3.2). Lines are for the 𝑞𝑐 values of 0, 1/1000, 1/100,
1/10, 1, 10, 100, and 1000. Solid lines are from the numerically derived coherence
function, dash-dotted lines are from the modified effective parameters method as given
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in Eq. (4.2.25).
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4.5 Effect of Source Coherence

The above expressions for the coherence function of Gaussian beams in turbulence

can also be used to measure the respective effects of the beam source to that of the

atmospheric turbulence. An example of an application where this may be impor-

tant is adaptive optics (AO) where the intent is to correct phase perturbations due

to the atmospheric turbulence alone. In this application, the phase perturbations

due the the partial coherence of the source may act as an additional noise source,

particularly when using an interferometric wavefront sensor such as a self-referencing

interferometer (SRI).

For an SRI to predominately measure the atmospherically induced phase per-

turbations, the effect of partial coherence of the source needs to be negligible when

compared to that of the atmosphere. This condition can be expressed as constraints

on the value of 𝑞𝑐. In the situations where these constraints are not satisfied, alternate

wavefront sensors should be used, such as the Shack-Hartmann wavefront sensor.

If the AO system is operating in a regime where the quadratic approximation gives

the best result, this constraint can be found from Eq. (4.2.13) and simply expressed

as

𝑞𝑐 ≪ 𝛼𝑞. (4.5.1)

However, if the modified effective parameters method gives the best result, then it

may be possible to find less restrictive constraints on 𝑞𝑐. Since the modified effective

parameters method assumes the beam MCF may be separated into two parts, one due

to the partial coherence of the beam source and the other due to the turbulence in

the atmosphere, the coherence radius resulting from each source of randomness may

be considered separately. If the coherence radius due to the beam source as given

by Eq. (4.2.19) is sufficient large, then only the effects of the atmosphere should be
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measured by the SRI. This constraint can be expressed as

𝜌𝑐 > 𝐷/2, (4.5.2)

where 𝐷 is the diameter of the AO system receiver aperture. Using Eq. (4.2.19) along

with some algebra results in the constraints

𝑞𝑐 <
(Θ20 + Λ

2
0)Λ𝐷/2

1− 2Λ𝐷Λ0 for 2Λ𝐷Λ0 < 1, (4.5.3)

or

Λ𝐷 ≥ 1

2Λ0
, (4.5.4)

where

Λ𝐷 =
8𝐿

𝑘𝐷2
. (4.5.5)

For the beam source to have a negligible effect on the atmospheric term, there must

be little difference between between the effective parameters method and the modified

method. This is true so long as

𝑞𝑐 ≪ 𝛼𝑞 +
1

4Λ
. (4.5.6)

4.6 Conclusion

An alternative method of estimating the coherence function of a partially coher-

ent Gaussian beam after propagation through atmospheric turbulence was introduced,

and its accuracy was compared to those of the previously published estimation meth-

ods based on the quadratic approximation and perturbation theory using effective pa-
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rameters. The basis of comparison was found by numerically integrating the parabolic

equation, and fitting samples of the resulting numeric coherence function to the ex-

ponential of a power. Assuming a collimated source beam, this study demonstrated

that the alternative method using modified effective parameters more accurately es-

timated both the coherence radius and functional shape than the original effective

parameters method throughout the entire parameter space. However, the quadratic

approximation was shown to be the more accurate estimate in the transitory region

of 0.1 < 𝑞Λ0 < 10 with a nearly coherent source subject to the constraint 𝑞𝑐Λ0 < 1.

By selecting the appropriate estimation method, the coherence radius estimation er-

ror can usually be kept to within 5%, with a maximum error of 7% for very strong

turbulence and a nearly coherent source. Analysis of the numerically evaluated co-

herence function shape revealed that it is more Gaussian than predicted by either

of the effective parameter methods, especially in strong turbulence. This means a

Gaussian approximation of the coherence function, such as given by the quadratic

approximation, is a better approximation than would have otherwise been expected.

Finally, constraints were found on the beam source degree of coherence that would

allow an interferometric wavefront sensor, such as the SRI, to predominately measure

phase perturbations due to atmospheric turbulence alone.

This analysis is useful for any application that depends on accurate estimates of

the coherence size of incident light. As the coherence radius estimation error can be

as large as 20%, selecting the wrong method can have a large negative impact an

any further performance analysis. This is particularly the case when atmospherically

perturbed light is coupled into single-mode optical fibers. Since the mean coupling

efficiency may be proportional to the square of the coherence radius of the field, er-

rors in estimating the coherence radius result in even larger errors in estimating the

mean coupling efficiency. This study also indicates the use effective beam parame-
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ters may be most effective when they includes both turbulence strength and source

coherence effects. Since effective beam parameters have been used to estimate beam

wander, scintillation index, free-space optical communication performance, and ladar

performance [2], these applications also stand to benefit from the results of this study

whenever the light source is partially coherent.
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V. Coupling of GSM Beams Into Single-Mode Optical
Fibers

5.1 Introduction

The coupling of random light into single-mode optical fibers has found applica-

tion in a wide range of fields such as free-space optical communication, stellar in-

terferometry, ladar/lidar, and wavefront sensing [23, 45, 55, 65, 75, 79, 83, 90, 94]. The

randomness of the incident light can be due to a partially coherent or incoherent light

source, variations due to atmospheric turbulence, localized effects, or combinations

of the above [28, 55, 68, 82, 89, 101]. If the light incident on the fiber is random, the

resulting coupling efficiency is a random variable. While a general expression for the

average coupling efficiency of stochastic light into optical fibers is available, it is not

generally analytically tractable and usually requires numerical integration methods

or simplifying approximations to solve [23, 94]. In the particular case of coupling a

partially coherent plane wave where an analytical expression has been derived, the

solution involvs an infinite series of confluent hypergeometric functions [17]. As both

numerical techniques and this analytic expression are computationally intensive, it

would be useful to have an algebraic expression for the coupling efficiency, even if it

is only an approximation. As long as this algebraic expression is reasonably accurate,

it could facilitate additional insight into the relative interactions of the beam and at-

mospheric parameters. Its use would also considerably decrease the simulation time

of dynamic systems, such as when there is relative motion between the light source

and the receiver.

While a general expression for the average coupling efficiency has been published,

one has not been found in the literature for its variance. Ruilier and Cassaing [75]

developed an expression for the relative fluctuations of the coupling efficiency (de-
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fined as the standard deviation divided by the mean), but it is quite inaccurate when

the spatial coherence length of the light is small relative to the receiver diameter.

Evaluating the variance of the coupling efficiency has generally required the use of

a large number of computer simulation runs [75, 79]. If the coupling efficiency vari-

ance is needed for noise analysis or similar system characterizations, the need to run

thousands of simulations is obviously burdensome. As with the coupling efficiency,

an algebraic expression for the coupling efficiency variance in terms of the light and

optical fiber parameters would be greatly useful.

One final consideration when analyzing the coupling of stochastic light into optical

fibers is the nature of the fluctuations of the light. Previous analysis has generally as-

sumed the random fluctuations lie primarily in the phase of the field. Any fluctuations

in the field amplitude are assumed to be negligible and are ignored [79]. Such as-

sumptions are valid in cases such as coherent light passing through weak atmospheric

turbulence, but may not be appropriate when the light is initially spatially incoherent,

or if it passes through strong turbulence. In these latter cases, the light would contain

significant amplitude fluctuations, known as speckle [40] or scintillation [2] (this chap-

ter exclusively uses the term speckle). While speckle is a fourth-order characteristic

of the stochastic field, it plays a dominant role in determining the coupling efficiency

variance, and even affects the mean coupling efficiency in certain cases. Winzer and

Leeb [94] studied the effect of speckle on coupling efficiency, but the assumptions

implicit in their analysis are only valid when the speckle size is either small or large

with respect to the receiver aperture. As far as has been determined, this is the first

study that specifically examines the effects of speckle on the coupling efficiency of

random light into optical fibers in all conditions.

While it may be possible to extend the analysis of this chapter to more general

classes of random light or multi-mode optical fibers, the focus here is on Gaussian
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Schell-model (GSM) beams and step-index, single-mode fibers. GSM beams have been

extensively studied in the literature and can be used to model some partially coherent

light sources [24,26,37,47,49,53,68,80,88,97]. It has also been shown that GSM beams

remain GSM beams to a good approximation as they propagate through atmospheric

turbulence, where only the values of their characteristic parameters change [68, 88].

Since these beams can be completely described in terms of Gaussian functions, their

use also permits many tractable expressions in the analysis. The use of a step-index

optical fiber is not limiting since many other fiber configurations, such as graded-

index fibers, can be closely approximated by an equivalent step-index fiber [14, 59].

Therefore, these results should be applicable to a large variety of conditions and

configurations.

This chapter is organized as follows. Section 5.2 analyzes the mean coupling ef-

ficiency of GSM beams into single mode optical fibers. This results in an analytic

expression and algebraic approximation of the coupling efficiency based on the beam

and fiber parameters. The effects of the various approximations used in completing

the analysis are studied both analytically and through computer simulations. Em-

pirical compensation for errors due to these approximations is then developed to

increase the accuracy of the coupling efficiency equations. This is accomplished using

both non-speckled and speckled beams. Section 5.3 analyzes the coupling efficiency

variance. Expressions for the mean squared normalized variance are derived for the

cases of fully developed speckle, well-developed speckle, and no speckle. Computer

simulations are used to evaluate the accuracy of these results, and identify potential

compensation for the observed inaccuracies. Concluding remarks are given in Section

5.4.
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5.2 Mean Coupling Efficiency

This section details the development of analytic expressions for the mean coupling

efficiency of GSM beams into single-mode optical fibers. This development begins by

defining the the general expression for coupling efficiency, then applying it to GSM

beams and single-mode optical fibers. With the use of simplifying approximations,

an expression for the mean coupling efficiency and an algebraic approximation are

derived. These expressions are compared to the results of numerically integrating

the exact original expression and those of computer simulations using speckled fields.

Inaccuracies stemming from the simplifying approximations are thereby identified,

and appropriate compensation is suggested.

5.2.1 Fiber Coupling Overview.

The geometric configuration assumed by this analysis is indicated in Fig. 10. A

lens of focal length 𝑓 and circular aperture diameter 𝐷 is used to focus light contained

in the random wave 𝐸 onto the end of a single-mode optical fiber with a step-index

core radius of 𝑎. While the coupling efficiency calculations can be performed in the

focal plane ℱ , they can equally be performed at the exit pupil plane 𝒫 due to the

Fourier transform relationship between the two planes [39]. At plane 𝒫, the mean
coupling efficiency can be expressed as

⟨𝜂⟩ =

∫∫
𝒫

∫∫
𝒫

Γ(𝝆1,𝝆2)ℳ∗
0(𝝆1)ℳ0(𝝆2)𝑃 (𝝆1)𝑃 (𝝆2) d

2𝝆1 d
2𝝆2∫∫

𝒫

Γ(𝝆,𝝆)𝑃 (𝝆) d2𝝆

, (5.2.1)

where
∫∫

𝒫
represents integration over the entire plane 𝒫, 𝝆 is the two-dimensional co-

ordinate vector of plane 𝒫 with the origin at the optical axis, Γ(𝝆1,𝝆2) = ⟨𝐸(𝝆1)𝐸∗(𝝆2)⟩
is the mutual coherence function (MCF) of the incident field with ⟨⋅⟩ representing en-
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Figure 10. Geometric representation of the coupling of a random wave 𝐸 into a single-
mode optical fiber with a step-index core radius 𝑎. A circular aperture of diameter 𝐷
and a focusing lens are assumed to be located at the system exit pupil plane 𝒫, which
is separated from the end of the optical fiber located in the focal plane ℱ by the lens
focal length 𝑓 . All components are assumed to be properly aligned along the optical
axis.

semble averaging, ℳ0(𝝆) is the back-propagated LP01 fiber mode, and 𝑃 (𝝆) is the

aperture transmittance pupil function [23, 94].

The derivation of Eq. (5.2.1) requires not only the assumptions and approxima-

tions inherent in scalar wave theory and Fourier optics [39], but also the approximation

that the mean of a ratio of random variables can be treated as the ratio of the mean

of those random variables, or

〈∣∣∫∫
𝒫
𝐸(𝝆)ℳ∗

0(𝝆)𝑃 (𝝆) d
2𝝆
∣∣2∫∫

𝒫
∣𝐸(𝝆)∣2 𝑃 (𝝆) d2𝝆

〉
≃

〈∣∣∫∫
𝒫
𝐸(𝝆)ℳ∗

0(𝝆)𝑃 (𝝆) d
2𝝆
∣∣2〉〈∫∫

𝒫
∣𝐸(𝝆)∣2 𝑃 (𝝆) d2𝝆〉 . (5.2.2)

This approximation contains two inherent assumptions. The first is that the the nu-

merator and denominator are statistically independent of each other. Since the nu-

merator can never be greater than the denominator, this assumption is only strictly

true when the denominator is constant. However, if their respective standard de-

viations (std) are sufficiently small relative to their means, they may be considered

approximately independent. The second assumption is that the mean of the reciprocal
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of the denominator is approximately equal to the reciprocal of its mean, or

〈
1∫∫

𝒫
∣𝐸(𝝆)∣2 𝑃 (𝝆) d2𝝆

〉
≃ 1〈∫∫

𝒫
∣𝐸(𝝆)∣2 𝑃 (𝝆) d2𝝆〉 . (5.2.3)

Since this assumption only deals with the amplitude of the incident field, if all the

randomness of the field is limited to its phase, then Eq. (5.2.3) becomes an equality.

Otherwise, Eq. (5.2.3) is only a valid assumption when
∫∫

𝒫
∣𝐸(𝝆)∣2 𝑃 (𝝆) d2𝝆 once

again has a sufficiently small std relative to its mean. The impact of the approxima-

tion given in Eq. (5.2.2) on the following analysis can be evaluated through Monte

Carlo methods. This evaluation is conducted in Sec. 5.2.3.2.

The back-propagated LP01 fiber modeℳ0(𝝆) can be expressed as [52]

ℳ0(𝝆) =

(
𝑘𝑎𝑤𝑉√
𝜋𝑓

) 𝑢𝐽0

(
𝑘𝑎∣𝝆∣
𝑓

)
− 𝑘𝑎∣𝝆∣

𝑓

𝐽0(𝑢)

𝐽1(𝑢)
𝐽1

(
𝑘𝑎∣𝝆∣
𝑓

)
[
𝑢2 −

(
𝑘𝑎∣𝝆∣
𝑓

)2][
𝑤2 +

(
𝑘𝑎∣𝝆∣
𝑓

)2] , (5.2.4)

where 𝑘 = 2𝜋/𝜆 with 𝜆 the center wavelength of the light (assumed to be narrow-

band), 𝑉 = 𝑘𝑎(𝑛21 − 𝑛22)
1/2 is the normalized frequency of the fiber with 𝑛1 and 𝑛2

the index of refraction of the fiber core and cladding respectively, 𝑢 and 𝑤 are deter-

mined by the relations 𝑢2+𝑤2 = 𝑉 2 and 𝑢𝐽1(𝑢)𝐾0(𝑤) = 𝑤𝐾1(𝑤)𝐽0(𝑢), 𝐽0 and 𝐽1 are

Bessel functions of the first kind of order 0 and 1, and 𝐾0 and 𝐾1 are modified Bessel

functions of the second kind of order 0 and 1 [58]. This mode has been normalized

such that its inner product with itself is unity, or

∫∫
𝒫

ℳ0(𝝆)ℳ∗
0(𝝆) d

2𝝆 = 1. (5.2.5)

Equation (5.2.4) is obviously difficult to work with, so for analytic convenience it can
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be approximated with a normalized Gaussian shape given by [23]

ℳ0(𝝆) =
2
√
2𝜋𝐴

𝜋𝐷
exp

[
−
(
2𝐴

𝐷

)2
∣𝝆∣2
]
, (5.2.6)

where 𝐴 can be determined from [58]

𝐴 =
𝜋𝐷𝑎

2𝜆𝑓

(
0.65 +

1.619

𝑉 3/2
+
2.879

𝑉 6

)
. (5.2.7)

Coupling efficiency tends to be maximized when 𝐴 = 1.121 [23]. As seen in Fig. 11,

when 𝑉 = 2.4 (near the cut-off frequency for step-index single-mode fibers), the

Gaussian approximation reasonably resembles the exact mode shape. The goodness

of fit, as defined by the inner product of Eqs. (5.2.4) and (5.2.6), is a function of

𝑉 and falls from 0.9965 for 𝑉 = 2.4 to 0.946 for 𝑉 = 1.2 [58]. Since more power is

carried in the core of the fiber at higher 𝑉 , and is therefore less susceptible to bending

losses [14], a high 𝑉 can be reasonably assumed. For this reason, 𝑉 = 2.4 was used

in this analysis.

5.2.2 Mean Coupling of GSM Beams.

The MCF of any Schell-model field can be expressed in a functional form as [57,78]

Γ(𝝆1,𝝆2) = [𝑆(𝝆1)]
1/2 [𝑆∗(𝝆2)]

1/2 𝑔(𝝆1 − 𝝆2). (5.2.8)

One characteristic of Schell-model fields is that their coherence function, as defined

by

𝜇(𝝆1,𝝆2) =
∣Γ(𝝆1,𝝆2)∣

[Γ(𝝆1,𝝆1)]
1/2 [Γ(𝝆2,𝝆2)]

1/2
, (5.2.9)

97



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

ρ/D

D
M

0

Exact
Gaussian

Figure 11. A comparison between the exact expression and Gaussian approximation of
the back-propagated single-mode fiber transmission mode. For this figure, 𝜆 = 1.315𝜇m,
𝑉 = 2.4, 𝐴 = 1.121, and 𝑓/𝐷 = 2.

depends only on the difference 𝝆1−𝝆2, and not the individual locations of 𝝆1 and 𝝆2.

In this sense they are coherently homogeneous.1 If both 𝑆(𝝆) and 𝑔(𝝆) are Gaussian

functions, then they define a GSM beam with a MCF that can be expressed as

Γ(𝝆1,𝝆2) = exp

[
−∣𝝆1∣

2 + ∣𝝆2∣2
𝑤2𝑔

− ∣𝝆1 − 𝝆2∣2
𝜌2𝑔

− j𝑘

2𝑅𝑔

(∣𝝆1∣2 − ∣𝝆2∣2)
]
, (5.2.10)

where 𝑤𝑔 is the average beam radius, 𝜌𝑔 is the coherence radius, 𝑅𝑔 is the radius of

curvature, j =
√−1, and the MCF has been normalized such that Γ(0, 0) = 1. The

beam radius 𝑤𝑔 defines the average size of the beam. While it is defined in terms of

an ensemble average, by assuming ergodicity it is also equal to the long-time average

beam radius. It would therefore account for atmospheric effects such as beam wander

and spreading. The coherence radius 𝜌𝑔 is defined by the separation distance whereby

the the coherence function 𝜇(𝝆1 − 𝝆2) falls to e
−1. It effectively defines the circular

area within which the field can be considered coherent. The radius of curvature 𝑅𝑔

1Note that this relationship is often referred to as the modulus of the complex degree of coherence
[2] or the modulus of the complex coherence factor [38].

98



describes the surfaces of constant average phase. 𝑅𝑔 is positive for a converging

beam, negative for a diverging beam, and infinite for a collimated beam. These three

parameters completely characterize the statistics of GSM beams. It should be noted

that the following analysis makes no assumptions about how the field in plane 𝒫
originated, only that the MCF of the field is well approximated by Eq. (5.2.10).

Using the integrals Int1–Int4 defined in Appendix A, the mean coupling efficiency

equation given in Eq. (5.2.1) is expressed as

⟨𝜂⟩ = Int1
Int2

. (5.2.11)

If a clear, “hard” aperture of diameter 𝐷 is assumed, then the pupil function is given

by

𝑃 (𝝆) =

⎧⎨
⎩
1 if ∣𝝆∣ ≤ 𝐷/2,

0 if ∣𝝆∣ > 𝐷/2.

(5.2.12)

The analytic solution is determined using Eqs. (A.10) and (A.11) and given by

⟨𝜂⟩hard = 4𝐴2
(

𝐷

2𝑤𝑔

)2{
1− exp

[
−2
(

𝐷

2𝑤𝑔

)2]}−1 ∞∑
𝑖=0

∣∣∣∣∣ 1

(𝑖+ 1)!

(
𝐷

2𝜌𝑔

)2𝑖

× 1𝐹1

[
𝑖+ 1; 𝑖+ 2;−

(
𝐷

2𝑤𝑔

)2
−
(

𝐷

2𝜌𝑔

)2
− 𝐴2 − j𝑘𝐷

2

8𝑅𝑔

]∣∣∣∣∣
2

, (5.2.13)

where 1𝐹1(⋅) is the confluent hypergeometric function. For a given value of 𝐴, the
mean coupling efficiency is dependent on the ratios of the aperture area to the beam

area (𝜋𝐷2/4)/(𝜋𝑤2𝑔), the coherence area (𝜋𝐷
2/4)/(𝜋𝜌2𝑔), and the product of the wave-

length and radius of curvature (𝜋𝐷2/4)/(𝜆𝑅𝑔). While this expression for the mean

coupling efficiency is useful in many instances, it is analytically difficult to work with

and its utility may be limited by computational precision. For example, using double-

precision floating-point numbers as in Listing C.12, the confluent hypergeometric
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function causes an underflow condition prior to convergence when 𝐷/(2𝜌𝑔) is larger

than about 27. The evaluation of Eq. (5.2.13) for larger values of 𝐷/(2𝜌𝑔) therefore

requires either increased computational precision, such as using quadruple-precision

floating-point numbers, or numerically integrating Eq. (5.2.1). For the results in this

chapter, numerical integration was used.

To overcome the limitations of of Eq. (5.2.13), an alternative analytic method

is developed here. By approximating the “hard” aperture with a Gaussian “soft”

aperture whereby [2]

𝑃 (𝝆) = exp

(
−8 ∣𝝆∣

2

𝐷2

)
, (5.2.14)

Eqs. (A.19) and (A.20) are used in Eq. (5.2.11) to produce the algebraic approximation

⟨𝜂⟩soft =
4𝐴2

[(
𝐷

2𝑤𝑔

)2
+ 1

]
∣∣∣∣∣
(

𝐷

2𝑤𝑔

)2
+

(
𝐷

2𝜌𝑔

)2
+ 𝐴2 + 2 +

j𝑘𝐷2

8𝑅𝑔

∣∣∣∣∣
2

−
(

𝐷

2𝜌𝑔

)4 . (5.2.15)

A comparison of Eqs. (5.2.13) and (5.2.15) is found in Fig. 12. This figure demon-

strates how the average coupling efficiency is only weakly dependent on the beam

size, but is strongly dependent on the coherence size. As long as the coherence area

is larger than the aperture area, the coupling efficiency remains fairly constant, but

once the coherence area becomes smaller than the aperture area, the coupling effi-

ciency rapidly diminishes. It also demonstrates that what Eq. (5.2.15) makes up for

in simplicity and ease of use, it lacks in accuracy. This accuracy shortcoming can

be ameliorated though the use of compensation. Using compensation is important

in cases where Eq. (5.2.15) is used in further analytic work, such as the coupling

variance analysis of Sec. 5.3 where any errors are at the very least doubled.
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Figure 12. Plots of the analytic expression of Eq. (5.2.13) and the algebraic approxima-
tion of Eq. (5.2.15) of the mean coupling efficiency ⟨𝜂⟩ for a Gaussian Schell-model beam
into a single-mode optical fiber with differing values of the average beam radius 𝑤𝑔 and
coherence radius 𝜌𝑔. In both cases the beam is considered collimated with 𝑅𝑔 =∞. All
other values are the same as in Fig. 11.

5.2.3 Mean Coupling Efficiency Compensation.

There were three main approximations required to arrive at Eqs. (5.2.13) and (5.2.15):

1. The statistical approximation of Eq. (5.2.2),

2. The exact fiber mode of Eq. (5.2.4) was approximated with a Gaussian shape

of Eq. (5.2.6), and

3. The “hard” aperture pupil function of Eq. (5.2.12) was approximated as a Gaus-

sian “soft” aperture of Eq. (5.2.14).

The first two were necessary to derive Eq. (5.2.13), while all three were necessary

to derive Eq. (5.2.15). To have confidence in these equations and gain insight, it is

necessary to analyze the effects of each of these approximations. While approxima-

tion #3 can be analyzed by direct comparison, computer simulations are needed to

analyze the other two approximations. By assuming non-speckle conditions, whereby
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Eq. (5.2.2) becomes an equality, approximation #1 is eliminated. After separately

analyzing approximations #2 and #3, well-developed speckle conditions ar consid-

ered where approximation #1 may lead to errors. Following this methodology, the

accuracy of Eqs. (5.2.13) and (5.2.15) are determined, and any necessary adjustments

are made to compensate for the resulting inaccuracies.

5.2.3.1 Compensation for Non-speckled Beams.

While random light is typically characterized by speckle, there are some cases

where nearly all the randomness occurs in the phase of the light resulting in very

little to no speckle. One particular instance of this is when coherent light passes

through weak atmospheric turbulence [2]. Since the field amplitude can be considered

deterministic, the denominator of Eq. (5.2.2) can be moved outside the averaging

operator, and this expression becomes an equality. While the coherence function

resulting from this scenario is not quite Gaussian, Dikmelik and Davidson [23] have

shown that a Gaussian coherence function is an excellent approximation to the true

coherence function when calculating coupling efficiency. Additionally, Wheeler and

Schmidt [92] have shown that the coherence function becomes more Gaussian as the

turbulence strength increases. Alternatively, when a coherent Gaussian beam passes

through a phase screen which posesses a Gaussian power spectrum, the resulting

beam is well approximated with a GSM MCF [2,24, 99].

The effect of approximation #3 in isolation of the other two approximations can be

directly observed in Fig. 12. While Eqs. (5.2.13) and (5.2.15) have the same general

shape and asymptotic slopes for large and small 𝐷/(2𝜌𝑔), Eq. (5.2.15) underesti-

mates Eq. (5.2.13) at all times, with the greatest error at small 𝐷/(2𝜌𝑔). The nature

of these discrepancies can be directly evaluated from asymptotic approximations of

Eqs. (5.2.13) and (5.2.15). For small 𝐷/(2𝜌𝑔), only the first term of the summation
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in Eq. (5.2.13) is needed. By using the functional relationship [2, Eq. (GH7)]

1𝐹1(1; 2;−𝑥) = 1

𝑥

(
1− e−𝑥) , (5.2.16)

it can be approximated as2

⟨𝜂⟩hard ≃
4𝐴2

(
𝐷

2𝑤𝑔

)2 ∣∣∣∣∣1− exp
[
−
(

𝐷

2𝑤𝑔

)2
−
(

𝐷

2𝜌𝑔

)2
−𝐴2 − j𝑘𝐷

2

8𝑅𝑔

]∣∣∣∣∣
2

∣∣∣∣∣
(

𝐷

2𝑤𝑔

)2
+

(
𝐷

2𝜌𝑔

)2
+ 𝐴2 +

j𝑘𝐷2

8𝑅𝑔

∣∣∣∣∣
2{

1− exp
[
−2
(

𝐷

2𝑤𝑔

)2]}

for 𝜌𝑔 ≫ 𝐷/2. (5.2.17)

The limit of the ratio between Eq. (5.2.17) and Eq. (5.2.15) as 𝜌𝑔 tends toward infinity

can be expressed as

𝜂∞ = lim
𝜌𝑔→∞

⟨𝜂⟩hard
⟨𝜂⟩soft

=

(
𝐷

2𝑤𝑔

)2 ∣∣∣∣∣
(

𝐷

2𝑤𝑔

)2
+ 𝐴2 + 2 +

j𝑘𝐷2

8𝑅𝑔

∣∣∣∣∣
2 ∣∣∣∣∣1− exp

[
−
(

𝐷

2𝑤𝑔

)2
− 𝐴2 − j𝑘𝐷

2

8𝑅𝑔

]∣∣∣∣∣
2

[(
𝐷

2𝑤𝑔

)2
+ 1

] ∣∣∣∣∣
(

𝐷

2𝑤𝑔

)2
+ 𝐴2 +

j𝑘𝐷2

8𝑅𝑔

∣∣∣∣∣
2{

1− exp
[
−2
(

𝐷

2𝑤𝑔

)2]} .

(5.2.18)

In the opposite extreme, the asymptote of ⟨𝜂⟩ for small 𝜌𝑔 can be determined
through the use of the approximation

exp

(
−∣𝝆1 − 𝝆2∣2

𝜌2𝑔

)
≃ 𝜋𝜌2𝑔𝛿(𝝆1 − 𝝆2) for 𝜌𝑔 ≪ 𝐷/2, (5.2.19)

2Note that as 𝑤𝑔, 𝜌𝑔, and 𝑅𝑔 tend toward infinity, Eq. (5.2.17) reduces to the expression for the
coupling efficiency of a plane wave into a single-mode fiber given by 2[1− exp(−𝐴2)]2/𝐴2 [52].
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where 𝛿(𝝆) is the two-dimensional Dirac delta function defined by
∫∫

𝒫
𝑓(𝝆)𝛿(𝝆) d2𝝆 =

𝑓(0) for the arbitrary and well-behaved function 𝑓(𝝆). With this approximation,

Eq. (A.1) can be reduced to

Int1 ≃
8𝐴2𝜌2𝑔
𝐷2

∫∫
𝒫

exp

[
−2
(
1

𝑤2𝑔
+
4𝐴2

𝐷2

)
∣𝝆∣2
]
𝑃 2(𝝆) d2𝝆 for 𝜌𝑔 ≪ 𝐷/2. (5.2.20)

This can be directly evaluated for both “hard” and “soft” apertures, and once inserted

into Eq. (5.2.11) produces

⟨𝜂⟩hard ≃
2𝐴2

(
𝐷

2𝑤𝑔

)2{
1− exp

[
−2
(

𝐷

2𝑤𝑔

)2
− 2𝐴2

]}
(

𝐷

2𝜌𝑔

)2 [(
𝐷

2𝑤𝑔

)2
+ 𝐴2

]{
1− exp

[
−2
(

𝐷

2𝑤𝑔

)2]} for 𝜌𝑔 ≪ 𝐷/2,

(5.2.21)

and

⟨𝜂⟩soft ≃
2𝐴2

[(
𝐷

2𝑤𝑔

)2
+ 1

]
(

𝐷

2𝜌𝑔

)2 [(
𝐷

2𝑤𝑔

)2
+ 𝐴2 + 2

] for 𝜌𝑔 ≪ 𝐷/2. (5.2.22)

The ratio between Eq. (5.2.21) and Eq. (5.2.22) is then given by

𝜂0 =
⟨𝜂⟩hard
⟨𝜂⟩soft

for 𝜌𝑔 ≪ 𝐷/2

=

(
𝐷

2𝑤𝑔

)2 [(
𝐷

2𝑤𝑔

)2
+ 𝐴2 + 2

]{
1− exp

[
−2
(

𝐷

2𝑤𝑔

)2
− 2𝐴2

]}
[(

𝐷

2𝑤𝑔

)2
+ 1

][(
𝐷

2𝑤𝑔

)2
+ 𝐴2

]{
1− exp

[
−2
(

𝐷

2𝑤𝑔

)2]} . (5.2.23)

While a functional relationship can be found that uses 𝜂∞ and 𝜂0 to compensate for
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Figure 13. Error inherent in the analytic (left axis) and algebraic (right axis) expres-
sions for the mean coupling efficiency given by Eq. (5.2.13) and (5.2.15) respectively.
The error is referenced to the numerical evaluation of Eq. (5.2.1) using the exact back-
propagated fiber mode given by Eq. (5.2.4) with differing values of the average beam
radius 𝑤𝑔, coherence radius 𝜌𝑔, and 𝑅𝑔 =∞.

the effects of approximation #3 across all values of 𝐷/(2𝜌𝑔), for practical purposes

this discussion is reserved for the analysis of the effects of approximation #2.

The effect of approximation #2 can be evaluated by numerically integrating

Eq. (5.2.1) using the exact fiber mode of Eq. (5.2.4), and comparing the results

to that of Eqs. (5.2.13). Likewise, the combined effects of approximations #2 and

#3 are found by comparing the numeric results for the exact fiber mode to that of

Eq. (5.2.15). Figure 13 displays the resulting error of Eqs. (5.2.13) and (5.2.15) for

𝑅𝑔 =∞ and two values of 𝑤𝑔 with 𝑉 = 2.4. As was case with approximation #3, the

error due to approximation #2 is nearly constant for large or small 𝐷/(2𝜌𝑔), with a

smooth transition in the vicinity of 𝐷/(2𝜌𝑔) ∼ 1. The observed error at large and

small 𝐷/(2𝜌𝑔) due to approximation #2 were empirically evaluated for several values

of 𝑤𝑔 and are given in Table 1, where 𝑐∞ is the ratio between the numeric results

using the exact fiber mode and that of Eq. (5.2.13) for large 𝜌𝑔, and 𝑐0 is this ratio

for small 𝜌𝑔. Highly accurate estimates of 𝑐0 and 𝑐∞ for 𝑉 = 2.4 can be evaluated for
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Table 1. Best fit parameters for fiber mode shape compensation with resulting maxi-
mum error

algebraic analytic
𝑤𝑔 𝑐0 𝑐∞ 𝑏 𝑛 max error [%] 𝑏 𝑛 max error [%]
∞ 0.9846 0.9651 0.6884 2.307 0.75 1.081 2.684 0.056
5𝐷 0.9849 0.9653 0.6862 2.303 0.74 1.064 2.668 0.054
2𝐷 0.9864 0.9660 0.6750 2.279 0.67 0.9839 2.591 0.044
𝐷 0.9920 0.9686 0.6415 2.213 0.47 0.7868 2.385 0.026
𝐷/2 1.013 0.9794 0.5549 2.091 0.10 0.4846 2.093 0.0081

𝐷/(2𝑤𝑔) ≤ 1 using

𝑐0 =0.985 + 0.0282

(
𝐷

2𝑤𝑔

)1.94
, (5.2.24)

and

𝑐∞ =0.965 + 0.0142

(
𝐷

2𝑤𝑔

)2
. (5.2.25)

While the indicated accuracy in Fig. 13 may be sufficient when using Eq. (5.2.13),

it is doubtful the accuracy of Eq. (5.2.15) is adequate for many applications. The

accuracy of both expressions can be increased through the use of a compensation

equation that reasonably fits the curves in Fig. 13. One such equation is

𝜂fit =
𝑐∞𝜂∞ − 𝑐0𝜂0
1 + 𝑏

(
𝐷

2𝜌𝑔

)𝑛 + 𝑐0𝜂0, (5.2.26)

where 𝑏 and 𝑛 are fit parameters. While Eq. (5.2.26) is intended for use with

Eq. (5.2.15), it can also be used to correct Eq. (5.2.13) by setting 𝜂0 and 𝜂∞ to 1.

Compensation is made by multiplying the relevant mean coupling efficiency equation

by the optimally fit Eq. (5.2.26).

The optimum fit parameters, as determined using non-linear least-squares tech-
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niques, and the maximum resulting error for 𝑅𝑔 = ∞ and several values of 𝑤𝑔 are

given in Table 1. As indicated, the accuracy of Eq. (5.2.15) can be kept to within

0.8% with compensation, while the accuracy of Eq. (5.2.13) can be kept to within

0.06%. Estimates of the the fit parameters 𝑏 and 𝑛 for values of 𝐷/(2𝑤𝑔) ≤ 1 can be
found to better than 0.4% accuracy for use with Eq. (5.2.15) by using

𝑏 =0.6884− 0.1335
(

𝐷

2𝑤𝑔

)1.561
(5.2.27)

and

𝑛 =2.307− 0.2162
(

𝐷

2𝑤𝑔

)1.312
, (5.2.28)

while they can be found to better than 4% accuracy for use with Eq. (5.2.13) by using

𝑏 =1.081− 0.5962
(

𝐷

2𝑤𝑔

)1.173
(5.2.29)

and

𝑛 =2.684− 0.5908
(

𝐷

2𝑤𝑔

)1.164
. (5.2.30)

While these compensation techniques can significantly increase the accuracy of

Eqs. (5.2.13) and (5.2.15), they are limited to instances of coupling random fields with

deterministic amplitudes. However, these results can be extended to the coupling of

specked fields by examining the effect of approximation #1.
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5.2.3.2 Compensation for Speckled Beams.

In many (if not most) cases, random light exhibits speckle to some degree. There-

fore, it is important to understand the effect of speckle when coupling random light

into a single-mode optical fiber. This investigation was primarily conducted using

computer simulations. To simulate realizations of a random speckle field, the method

described by Gbur [36] and summarized here was used. The fields are generated by

combining temporally pulsed plane waves where the number of waves, their departure

times, and their directions are all random. Field realizations are written in the form

𝐸(𝝆) =

𝑁∑
𝑖=1

Θ(𝝆)Φ(𝑡𝑖) exp (−jK𝑖 ⋅ 𝝆) , (5.2.31)

where Θ(𝝆) is the average field shape; Φ(𝑡) is the temporal pulse shape; 𝑁 is the

random number of pulses, which has a Poisson distribution; 𝑡𝑖 is the random pulse

departure time, which is uniformly distributed within the pulse shape; and K𝑖 is the

random pulse direction vector, which has a zero-mean Gaussian distribution with a

std of 𝜎K. As shown in [36], the resulting MCF for these fields can be expressed as

Γ𝐺(𝝆1,𝝆2) = 𝜈𝑝Θ(𝝆1)Θ
∗(𝝆2) exp

(
−𝜎

2
K

2
∣𝝆1 − 𝝆2∣2

)∫ ∞

−∞

∣Φ(𝑡)∣2 d𝑡, (5.2.32)

where 𝜈𝑝 is the average pulse rate. As long as

Θ(𝝆) =

[
𝜈𝑝

∫ ∞

−∞

∣Φ(𝑡)∣2 d𝑡
]−1/2

exp

[
−
(
1

𝑤2𝑔
+

j𝑘

2𝑅𝑔

)
∣𝝆∣2
]
, (5.2.33)

then Eq. (5.2.32) reduces to Eq. (5.2.10) with 𝜌𝑔 = 21/2/𝜎K. An example of a field

generated by this method using Listing C.5 is shown in Fig. 14. The amplitude

displays well-developed speckle, and as expected the phase displays corresponding

branch points and branch cuts [34, 40].
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Figure 14. A realization of a speckled field. This realization used a Gaussian temporal
pulse with a FWHM bandwidth of 1/100 the central frequency of 228 THz, an average
pulse rate of 5 pulses per cycle, and an overall coherence radius of 10 cm. Image (a)
contains the field amplitude which has an average beam radius of 75 cm. Image (b)
contains the field phase which is wrapped between −𝜋 (black) and 𝜋 (white) radians.

In these runs, as well as all other simulation runs, the coherence radius 𝜌𝑔 ranged

from 50 𝐷 (practically coherent) to 𝐷/200 (practically incoherent), the beam radius

𝑤𝑔 was varied between 𝐷/2 and ∞, and the beams were considered collimated. The
simulations used a Gaussian temporal pulse with a full-width, half-max (FWHM)

bandwidth of 1/100 the central frequency of 228 terahertz (THz), and an average

pulse rate of 5 pulses per cycle (1140 THz). A total of 2000 independent realiza-

tions were used to generate each data point. The average coupling efficiency was

calculated using these simulated fields and the exact fiber mode given by Eq. (5.2.4),

then compared to the numerically integrated results of Eq. (5.2.1) using the “hard”

aperture pupil function of Eq. (5.2.12) and the exact fiber mode. This comparison,

as shown in Fig. 15 with 95% confidence levels, demonstrated good agreement when

either 𝜌𝑔 ≫ 𝐷/2 or 𝜌𝑔 ≪ 𝐷/2. This is as expected since those are the regions where

the beam is either nearly coherent, making the beam’s amplitude nearly determinis-

tic, or the beam is nearly incoherent thereby producing many independent regions of
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Figure 15. Error of the mean coupling efficiency due the the simplifying statistical
approximation given by Eq. (5.2.2) when the incident field is well-speckled. The error
is referenced to the numerical evaluation of Eq. (5.2.1) using the exact back-propagated
fiber mode given by Eq. (5.2.4) with differing values of the average beam radius 𝑤𝑔,
coherence radius 𝜌𝑔, and 𝑅𝑔 =∞. Error bars represent the 95% confidence level.

amplitude within the aperture which get summed together. Under these conditions,

the denominator in Eq. (5.2.2) is nearly deterministic so approximation #1 produces

little error. However, when 𝜌𝑔 is close to 𝐷/2, the total power within the aperture can

vary greatly from one realization to the next resulting in a smaller ⟨𝜂⟩ than expected.
According to the simulations, this discrepancy can be as large as about 15%.

To compensate for this effect when using the algebraic approximation of Eq. (5.2.15),

the fit parameters of Eq. (5.2.26) may be adjusted to fit the simulation data. Due to

the random nature of this data, there is little practical advantage of optimizing these

parameter values in lieu of using the nominal values of 𝑏 = 4.5 and 𝑛 = 1.7. These

nominal parameters result in the simulation data falling within 5% of the expected

value for all 𝑤𝑔 values tested. The effect of this alternate compensation is shown in

Fig. 16 for 0.1 < 𝐷/(2𝜌𝑔) < 10, using 𝑤𝑔 of∞ and 𝐷/2 as examples. However, when

using the exact analytic solution of Eq. (5.2.13), simply adjusting the fit parameters

of Eq. (5.2.26) does not sufficiently compensate the effect of speckle and requires ad-
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Figure 16. The effect of compensation on the accuracy of the algebraic expression of the
mean coupling efficiency given by Eq. (5.2.15) when the incident field is well-speckled
with differing values of the average beam radius 𝑤𝑔, coherence radius 𝜌𝑔, and 𝑅𝑔 =∞.
The numeric results using the exact back-propagated fiber mode given by Eq. (5.2.4)
is provided for reference. Simulation results are indicated by circles, and error bars
represent the 95% confidence level.

ditional compensation measures. Since adequate compensation was achieved using

the algebraic approximation, additional compensation for the analytic solution was

not sought. This investigation demonstrates that while speckle does effect the ⟨𝜂⟩
measurement in certain regimes, compensation can be easily made for this effect.

5.3 Coupling Variance

With accurate expressions for the mean coupling efficiency, it is now possible to

derive expressions for the coupling efficiency variance. Since the coupling efficiency

variance is based on the fourth-order moment of the field, the speckle content of the

field has a large impact on the resulting expressions. Expressions are derived for the

cases of fully developed speckle, when the speckle is not quite fully developed, and

when there is no speckle. These expressions are evaluated by comparisons to either

numerical integration or computer simulation results. As was accomplished with the
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mean coupling efficiency, the inaccuracies due to the simplifying approximations are

identified, and suitable compensation is suggested.

5.3.1 Fully Speckled Beams.

To derive the coupling efficiency variance, it is necessary to determine the second

moment of 𝜂, which can be most generally expressed as

〈
𝜂2
〉
=

〈∣∣∫∫
𝒫
𝐸(𝝆)ℳ∗

0(𝝆)𝑃 (𝝆) d
2𝝆
∣∣4[∫∫

𝒫
∣𝐸(𝝆)∣2 𝑃 (𝝆) d2𝝆]2

〉
. (5.3.1)

Expanding the terms, applying a similar statistical approximation to that of Eq. (5.2.2),

and exchanging the order of integration and averaging produces

〈
𝜂2
〉
=

∫∫
𝒫

∫∫
𝒫

∫∫
𝒫

∫∫
𝒫

Γ(𝝆1,𝝆2,𝝆3,𝝆4)ℳ∗
0(𝝆1)ℳ0(𝝆2)ℳ∗

0(𝝆3)ℳ0(𝝆4)

× 𝑃 (𝝆1)𝑃 (𝝆2)𝑃 (𝝆3)𝑃 (𝝆4) d2𝝆1 d2𝝆2 d2𝝆3 d2𝝆4/∫∫
𝒫

∫∫
𝒫

Γ(𝝆1,𝝆1,𝝆2,𝝆2)𝑃 (𝝆1)𝑃 (𝝆2) d
2𝝆1 d

2𝝆2 , (5.3.2)

where Γ(𝝆1,𝝆2,𝝆3,𝝆4) = ⟨𝐸(𝝆1)𝐸∗(𝝆2)𝐸(𝝆3)𝐸
∗(𝝆4)⟩ is the fourth-order coherence

function of the field.

In general, the fourth-order coherence function can be very difficult to determine,

but one instance where it is simple to calculate is when the field displays fully devel-

oped speckle. In this case, the field is defined as a circular complex Gaussian random

process, and therefore all of its higher-order statistics can be expressed in terms of

its first- and second-order statistics [40]. By the complex Gaussian moment theorem,

the fourth-order coherence function can be expressed in terms of the MCF as

Γ(𝝆1,𝝆2,𝝆3,𝝆4) = Γ(𝝆1,𝝆2)Γ(𝝆3,𝝆4) + Γ(𝝆1,𝝆4)Γ(𝝆3,𝝆2). (5.3.3)
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Inserting this into Eq. (5.3.2), along with performing some algebra, produces

〈
𝜂2
〉
=

2

[∫∫
𝒫

∫∫
𝒫

Γ(𝝆1,𝝆2)ℳ∗
0(𝝆1)ℳ0(𝝆2)𝑃 (𝝆1)𝑃 (𝝆2) d

2𝝆1 d
2𝝆2

]2
[∫∫

𝒫

Γ(𝝆,𝝆)𝑃 (𝝆) d2𝝆

]2
+

∫∫
𝒫

∫∫
𝒫

∣Γ(𝝆1,𝝆2)∣2 𝑃 (𝝆1)𝑃 (𝝆2) d2𝝆1 d2𝝆2
.

(5.3.4)

Alternatively, this can be expressed in term of Eqs. (A.1)–(A.4) as

〈
𝜂2
〉
=

2 Int21
Int22 + Int3

. (5.3.5)

While Eq. (5.3.5) can be directly evaluated using the results of Appendix A, it is

more useful to instead evaluate the mean squared normalized variance defined as

�̃�2𝜂 =
⟨𝜂2⟩
⟨𝜂⟩2 − 1. (5.3.6)

Inserting Eqs. (5.2.11) and (5.3.5) into Eq. (5.3.6) produces

�̃�2𝜂 =
Int22 − Int3
Int22 + Int3

. (5.3.7)

Since neither Int2 nor Int3 usesℳ0 or 𝑅𝑔 in their definitions, the fiber mode shape and

the radius of curvature have no effect on �̃�2𝜂 for fully specked fields. Using the GSM

beam MCF of Eq. (5.2.10) and the “hard” aperture pupil function of Eq. (5.2.12),
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Eq. (5.3.7) can be evaluated using Eqs. (A.10) and (A.12) and expressed as

�̃�2𝜂,hard =

⎛
⎝{1− exp

[
−2
(

𝐷

2𝑤𝑔

)2]}2
− 4
(

𝐷

2𝑤𝑔

)4 ∞∑
𝑖=0

{
2𝑖

(𝑖+ 1)!

(
𝐷

2𝜌𝑔

)2𝑖

× 1𝐹1

[
𝑖+ 1; 𝑖+ 2;−2

(
𝐷

2𝑤𝑔

)2
− 2
(
𝐷

2𝜌𝑔

)2]}2⎞⎠
/⎛
⎝
{
1− exp

[
−2
(

𝐷

2𝑤𝑔

)2]}2
+ 4

(
𝐷

2𝑤𝑔

)4 ∞∑
𝑖=0

{
2𝑖

(𝑖+ 1)!

(
𝐷

2𝜌𝑔

)2𝑖

× 1𝐹1

[
𝑖+ 1; 𝑖+ 2;−2

(
𝐷

2𝑤𝑔

)2
− 2
(
𝐷

2𝜌𝑔

)2]}2⎞⎠ . (5.3.8)

A Matlab
Ⓡ script for evaluating Eq. (5.3.8) is given in Listing C.13.

A simpler algebraic approximation to Eq. (5.3.8) can be derived by using the

Gaussian “soft” pupil function of Eq. (5.2.14), where Eqs. (A.14) and (A.15) are

used to evaluate Eq. (5.3.7). After some algebraic simplification, the result can be

expressed as

�̃�2𝜂,soft =

(
𝐷

2𝜌𝑔

)2
(

𝐷

2𝑤𝑔

)2
+

(
𝐷

2𝜌𝑔

)2
+ 1

. (5.3.9)

A comparison between Eqs. (5.3.8) and (5.3.9) is displayed in Fig. 17 for two values

of 𝑤𝑔. While all lines tend toward a value of one for large 𝐷/(2𝜌𝑔), the two methods

give different results for for small 𝐷/(2𝜌𝑔) and finite 𝑤𝑔. The nature of this difference

can be evaluated by comparing the asymptotic approximation of Eqs. (5.3.8) at small

values of 𝐷/(2𝜌𝑔) to Eq. (5.3.9) as was performed in Sec. 5.2.3.1. Using only the first
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Figure 17. Plots of the analytic expression of Eq. (5.3.8) and the algebraic approximation
of Eq. (5.3.9) of the mean squared normalized coupling variance for fully developed
speckle fields with differing values of the average beam radius 𝑤𝑔, coherence radius 𝜌𝑔,
and 𝑅𝑔 =∞.

term in each series, along with Eq. (5.2.16), Eq. (5.3.8) becomes

�̃�2𝜂,hard ≃
⎛
⎝
[(

𝐷

2𝑤𝑔

)2
+

(
𝐷

2𝜌𝑔

)2]2{
1− exp

[
−2
(

𝐷

2𝑤𝑔

)2]}2

−
(

𝐷

2𝑤𝑔

)4{
1− exp

[
−2
(

𝐷

2𝑤𝑔

)2
− 2
(
𝐷

2𝜌𝑔

)2]}2⎞⎠
/⎛⎝[( 𝐷

2𝑤𝑔

)2
+

(
𝐷

2𝜌𝑔

)2]2{
1− exp

[
−2
(

𝐷

2𝑤𝑔

)2]}2

+

(
𝐷

2𝑤𝑔

)4{
1− exp

[
−2
(

𝐷

2𝑤𝑔

)2
− 2
(
𝐷

2𝜌𝑔

)2]}2⎞⎠ for 𝜌𝑔 ≫ 𝐷/2.

(5.3.10)

The limit of the ratio between Eq. (5.3.10) and Eq. (5.3.9) as 𝜌𝑔 tends toward infinity
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can be expressed as

𝜎2∞ = lim
𝜌𝑔→∞

�̃�2𝜂,hard
�̃�2𝜂,soft

=

[(
𝐷

2𝑤𝑔

)2
+ 1

]{
1−
[
2

(
𝐷

2𝑤𝑔

)2
+ 1

]
exp

[
−2
(

𝐷

2𝑤𝑔

)2]}
(

𝐷

2𝑤𝑔

)2{
1− exp

[
−2
(

𝐷

2𝑤𝑔

)2]} . (5.3.11)

This relationship can be used to compensate Eq. (5.3.9) as was performed for Eq. (5.2.15)

in Sec. 5.2.3. However, since an approximation similar to approximation #1 was

needed to derive Eq. (5.3.2), one would expect Eq. (5.3.8) to be in error when

𝐷/(2𝜌𝑔) ∼ 1. As a result, any final compensation must take into account the re-

sults of empirical evaluations.

5.3.2 Computer Simulations.

Computer simulations not only allow for an evaluation of Eqs. (5.3.8) and (5.3.9)

for fully developed speckle fields, but also for fields that do not display fully developed

speckle. To this end, the results from two different methods of Monte Carlo field

generation were analyzed: one that generates random well-speckled fields, but not

necessarily fully developed speckle fields, and another that generates random non-

speckled fields. This methodology allows for further insight into the effect on coupling

variance by fields that may fall in between one extreme or the other.

5.3.2.1 Coupling Variance of Well-speckled Beams.

The analysis leading to Eqs. (5.3.8) and (5.3.9) required the fields to display fully

developed speckle. While the Gbur method as described in Sec. 5.2.3.2 creates fields

with well-developed speckle, the speckle is not necessarily fully developed. While it is
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possible to create fields that can be considered to have fully developed speckle through

the Gbur method, the 𝑁 in Eq. (5.2.31) must be sufficiently large for the given field

parameters, and in some cases this requirement can be prohibitive. Fortunately, it

is possible to derive the fourth-order coherence function for the fields generated by

this method, and thereby a direct expression for �̃�2𝜂 . In practice, the speckle content

of random fields coupled into single-mode fibers may not be fully developed, so the

results of the following analysis may better approximate the coupling variance in these

cases than Eqs. (5.3.8) or (5.3.9).

The fourth-order coherence function for a generated Gbur field is found by eval-

uating

Γ(𝝆1,𝝆2,𝝆3,𝝆4) =

〈
𝑁∑
𝑘=1

𝑁∑
𝑙=1

𝑁∑
𝑚=1

𝑁∑
𝑛=1

Θ(𝝆1)Θ
∗(𝝆2)Θ(𝝆3)Θ

∗(𝝆4)Φ(𝑡𝑘)Φ
∗(𝑡𝑙)Φ(𝑡𝑚)Φ

∗(𝑡𝑛)

× exp (−jK𝑘 ⋅ 𝝆1) exp (jK𝑙 ⋅ 𝝆2) exp (−jK𝑚 ⋅ 𝝆3) exp (jK𝑛 ⋅ 𝝆)
〉
.

(5.3.12)

By following the procedure outlined in [36], the resulting expression for the fourth-

order coherence function becomes

Γ(𝝆1,𝝆2,𝝆3,𝝆4) =𝜈𝑝Θ(𝝆1)Θ
∗(𝝆2)Θ(𝝆3)Θ

∗(𝝆4) exp

(
−∣𝝆1 − 𝝆2 + 𝝆3 − 𝝆4∣2

𝜌2𝑔

)

×
∫ ∞

−∞

∣Φ(𝑡)∣4 d𝑡+ Γ𝐺(𝝆1,𝝆2)Γ𝐺(𝝆3,𝝆4) + Γ𝐺(𝝆1,𝝆4)Γ𝐺(𝝆3,𝝆2).

(5.3.13)

Using Eq. (5.2.33) for Θ(𝝆), the fourth-order coherence function for the Gbur fields
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can be expressed as

Γ(𝝆1,𝝆2,𝝆3,𝝆4) =𝜖Γ
′(𝝆1,𝝆2,𝝆3,𝝆4) + Γ(𝝆1,𝝆2)Γ(𝝆3,𝝆4) + Γ(𝝆1,𝝆4)Γ(𝝆3,𝝆2),

(5.3.14)

where

𝜖 =

∫∞

−∞
∣Φ(𝑡)∣4 d𝑡

𝜈𝑝

[∫∞

−∞
∣Φ(𝑡)∣2 d𝑡

]2 , (5.3.15)

and

Γ′(𝝆1,𝝆2,𝝆3,𝝆4) = exp

[
−∣𝝆1∣

2 + ∣𝝆2∣2 + ∣𝝆3∣2 + ∣𝝆4∣2
𝑤2𝑔

− ∣𝝆1 − 𝝆2 + 𝝆3 − 𝝆4∣2
𝜌2𝑔

− j𝑘

2𝑅𝑔

(∣𝝆1∣2 − ∣𝝆2∣2 + ∣𝝆3∣2 − ∣𝝆4∣2)
]
. (5.3.16)

This demonstrates that the only difference in the fourth-order coherence function

between a Gbur field and a fully developed speckle field is the additional term of

𝜖Γ′(𝝆1,𝝆2,𝝆3,𝝆4). For a given pulse shape, 𝜖 is dependent on the pulse rate, so the

higher the pulse rate, the smaller the 𝜖, and the closer the Gbur fields resemble fully

developed speckle fields.

Inserting Eq. (5.3.14) into Eq. (5.3.2), ⟨𝜂2⟩ for the Gbur fields can be expressed
in terms of the integrals of Eqs. (A.1)–(A.4) as

〈
𝜂2
〉
=

𝜖Int4 + 2Int
2
1

(𝜖+ 1)Int22 + Int3
, (5.3.17)

while �̃�2𝜂 becomes

�̃�2𝜂 =

[
𝜖
(
Int4/Int

2
1 − 1

)
+ 1
]
Int22 − Int3

(𝜖+ 1)Int22 + Int3
. (5.3.18)
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The complexity of Int4 makes it non-amenable to either numerical or exact ana-

lytical evaluation using the “hard” aperture pupil function of Eq. (5.2.12). However,

it can be evaluated using the Gaussian “soft” aperture approximation of Eq. (5.2.14).

While the general expression for �̃�2𝜂 using Eqs. (A.19)–(A.22) is extremely complex,

it can be simplified considerably when the beam is collimated where 𝑅𝑔 =∞. In this
case, �̃�2𝜂 can be reduced to

�̃�2𝜂 =

2𝜖

(
𝐷

2𝜌𝑔

)4 [(
𝐷

2𝑤𝑔

)2
+ 2

(
𝐷

2𝜌𝑔

)2
+ 1

]
[(

𝐷

2𝑤𝑔

)2
+ 4

(
𝐷

2𝜌𝑔

)2
+ 𝐴2 + 2

][(
𝐷

2𝑤𝑔

)2
+ 𝐴2 + 2

] + ( 𝐷

2𝜌𝑔

)2

𝜖

2

[(
𝐷

2𝑤𝑔

)2
+ 2

(
𝐷

2𝜌𝑔

)2
+ 1

]
+

(
𝐷

2𝑤𝑔

)2
+

(
𝐷

2𝜌𝑔

)2
+ 1

. (5.3.19)

The limit of the ratio for small 𝐷/(2𝜌𝑔) between Eqs. (5.3.9) and (5.3.19) is found

to be 1+ 𝜖/2. However, when 𝐷/(2𝜌𝑔) is large, Eq. (5.3.19) increases as the square of

𝐷/(2𝜌𝑔). This means as long as 𝜖 and 𝐷/(2𝜌𝑔) are sufficiently small, the Γ
′ term in

Eq. (5.3.14) is negligible and the Gbur field can be considered to have fully developed

speckle. But for sufficiently large 𝐷/(2𝜌𝑔), the Γ
′ term will begin to dominate. This

suggests three regions that require matching when compensating for the approxima-

tions used to derive Eq. (5.3.19). In the first region where 𝐷/(2𝜌𝑔) < 0.1, multiplying

Eq. (5.3.19) by Eq. (5.3.11) should suffice. In the second region of 0.1 < 𝐷/(2𝜌𝑔) < 10,

errors due to the statistical approximation similar to approximation #1 should dom-

inate. Compensation for this approximation can only be evaluated empirically. In

the final region of 𝐷/(2𝜌𝑔) > 10, errors due to the Gaussian “soft” aperture approx-

imation used to evaluate Int4 dominate. Compensation for this region can be either

derived by numerical evaluation of Int4 or through computer simulation.

To evaluate the accuracy of Eq. (5.3.19), simulations as described in Sec. 5.2.3.2
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Figure 18. Difference between simulation data and the algebraic approximation for the
normalized coupling efficiency variance when the fields are well-speckled with differing
values of the average beam radius 𝑤𝑔, coherence radius 𝜌𝑔, 𝑅𝑔 =∞, and two pulse rates.
The error is referenced to Eq. (5.3.19). The simulation results that used an average
pulse rate of one pulse per cycle are indicated by circles and connected with dotted
lines. The simulation results that used an average pulse rate of five pulses per cycle
are indicated by squares and connect by solid lines. Error bars represent two std and
were empirically derived from the data.
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were run using a pulse rate of one pulse per cycle (228 THz) with 𝜖 = 0.015, and five

pulses per cycle (1140 THz) with 𝜖 = 0.003. The difference between the simulation-

derived normalized variance, where the square of the appropriately compensated

Eq. (5.2.15) was used to normalize the data, and Eq. (5.3.19) is displayed in terms of

percent error in Fig. 18. Error bars represent two std and were empirically derived

from the data by observing the dependence of the std on the number of sample points

used. While Fig. 18 clearly demonstrates the effect of the statistical approximation

when 0.1 < 𝐷/(2𝜌𝑔) < 10, the simulations do not adequately elucidate the effects of

the errors in the other two regions. Since the std of the data decreases as the number

of samples increases, additional simulation runs would be needed to better evaluate

the effect of the errors in these regions.

Despite its shortcomings, the present data suggest a simple nominal compensation

function given by

𝜎2𝜂,fit = 0.18

∣∣∣∣ln 𝐷

2𝜌𝑔

∣∣∣∣+ 0.65. (5.3.20)

While this compensation works best in the range of values 1 < 𝐷/(2𝜌𝑔) < 10 where

the discrepancy is generally kept to within 10% of the estimated value, 70% of all

the simulation data points now fall within 20% of the estimated value. The effect of

this compensation on the variance is shown in Fig. 19 for two values of 𝑤𝑔 and two

different pulse rates. As expected, Γ′ primarily affects values of 𝐷/(2𝜌𝑔) > 10, while

Eq. (5.3.20) adequately compensates the effect of the statistical approximation in the

region of 0.1 < 𝐷/(2𝜌𝑔) < 10. The biggest shortcoming of Eq. (5.3.20) is in the region

𝐷/(2𝜌𝑔) < 0.1 where the compensated algebraic approximation fails to converge with

the analytic solution as desired, and Eq. (5.3.11) should instead be used.
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Figure 19. The effect of compensation given by Eq. (5.3.20) on the algebraic approxima-
tion of Eq. (5.3.19) for the coupling variance of fields generated using the Gbur method
with differing values of the average beam radius 𝑤𝑔, coherence radius 𝜌𝑔, 𝑅𝑔 = ∞, and
two pulse rates. A plot of the analytic expression for the variance given by Eq. (5.3.8)
and multiplied by the square of the appropriately compensated Eq. (5.2.15) is included
for comparison. The simulation results that used an average pulse rate of one pulse
per cycle are indicated by circles. The simulation results that used an average pulse
rate of five pulses per cycle are indicated by squares. Error bars represent two std and
were empirically derived from the data.

122



5.3.2.2 Coupling Variance of Non-speckled Beams.

The other fields of interest are where there is very little to no speckle in the beam.

Since all the randomness is found in the phase of the beam, the fourth-order coherence

function is derived by evaluating

Γ(𝝆1,𝝆2,𝝆3,𝝆4) = exp

[
−∣𝝆1∣

2 + ∣𝝆2∣2 + ∣𝝆3∣2 + ∣𝝆4∣2
𝑤2𝑔

− j𝑘

2𝑅𝑔

(∣𝝆1∣2 − ∣𝝆2∣2 + ∣𝝆3∣2 − ∣𝝆4∣2)
]

× ⟨exp {j [𝑆(𝝆1)− 𝑆(𝝆2) + 𝑆(𝝆3)− 𝑆(𝝆4)]}⟩ , (5.3.21)

where 𝑆(𝝆) is the stochastic part of the field phase function. This ensemble average

can be estimated through the method of cumulants to the second order [62]. By this

method

⟨exp(𝜓)⟩ ≃ exp
[
⟨𝜓⟩+ 1

2

(〈
𝜓2
〉− ⟨𝜓⟩2)] , (5.3.22)

where the expression becomes an equality when 𝜓 is Gaussian. Assuming ⟨𝑆(𝝆)⟩ = 0,

the ensemble average becomes

⟨exp{j[𝑆(𝝆1)− 𝑆(𝝆2) + 𝑆(𝝆3)− 𝑆(𝝆4)]}⟩ ≃ exp
{
−1
2
⟨[𝑆(𝝆1)− 𝑆(𝝆2) + 𝑆(𝝆3)

− 𝑆(𝝆4)]
2⟩}

=exp
{
−Γ𝑆(0, 0)

[
2− Γ̃𝑆(𝝆1,𝝆2)

+ Γ̃𝑆(𝝆1,𝝆3)− Γ̃𝑆(𝝆1,𝝆4)− Γ̃𝑆(𝝆2,𝝆3)

+ Γ̃𝑆(𝝆2,𝝆4)− Γ̃𝑆(𝝆3,𝝆4)
]}

, (5.3.23)

where Γ̃𝑆(𝝆1,𝝆2) = Γ𝑆(𝝆1,𝝆2)/Γ𝑠(0, 0) and statistical homogeneity is assumed. As

long as Γ𝑆(0, 0) ≫ 1 and Γ̃𝑆(𝝆1,𝝆2) = exp
(− ∣𝝆1 − 𝝆2∣2 /𝜎2𝑆

) ≈ 1 − ∣𝝆1 − 𝝆2∣2 /𝜎2𝑆,
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then Eq. (5.3.23) can be expressed as

⟨exp{j[𝑆(𝝆1)− 𝑆(𝝆2) + 𝑆(𝝆3)− 𝑆(𝝆4)]}⟩ ≃

exp
[− (∣𝝆1 − 𝝆2∣2 − ∣𝝆1 − 𝝆3∣2 + ∣𝝆1 − 𝝆4∣2

+ ∣𝝆2 − 𝝆3∣2 − ∣𝝆2 − 𝝆4∣2 + ∣𝝆3 − 𝝆4∣2
)
/𝜌2𝑔
]
, (5.3.24)

where 𝜌𝑔 = 𝜎2𝑆/Γ𝑆(0, 0). By recognizing

∣𝝆1 − 𝝆2 + 𝝆3 − 𝝆4∣2 = ∣𝝆1 − 𝝆2∣2 − ∣𝝆1 − 𝝆3∣2 + ∣𝝆1 − 𝝆4∣2

+ ∣𝝆2 − 𝝆3∣2 − ∣𝝆2 − 𝝆4∣2 + ∣𝝆3 − 𝝆4∣2 , (5.3.25)

it is plain to see that the fourth-order coherence function of these non-speckle fields

is the same as Γ′(𝝆1,𝝆2,𝝆3,𝝆4) given in Eq. (5.3.16).

In terms of the integrals given in Eqs. (A.1)–(A.4), the normalized variance of

non-speckled beams becomes

�̃�2𝜂 =
Int4

Int21
− 1. (5.3.26)

While the algebraic expression resulting from the use of Eqs. (A.19)–(A.22) is com-

plicated in general, it can be simplified considerably for a collimated beam. In this

case, it reduces to

�̃�2𝜂 =

4

(
𝐷

2𝜌𝑔

)4
[(

𝐷

2𝑤𝑔

)2
+ 𝐴2 + 2

][(
𝐷

2𝑤𝑔

)2
+ 4

(
𝐷

2𝜌𝑔

)2
+ 𝐴2 + 2

] . (5.3.27)

As was the case for speckled beams, the accuracy of Eq. (5.3.27) was investigated

through the use of computer simulations. Fields were generated using the method

described by Xiao and Voelz [99] and summarized here. In this process, an array
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Figure 20. A realization of a field with all the randomness located in the phase. Image
(a) contains the field amplitude which has a beam radius 𝑤𝑔 of 75 cm. Image (b)
contains the random field phase wrapped between −𝜋 (black) and 𝜋 (white) radians.
The overall coherence radius of this field is 10 cm.

of zero-mean Gaussian random values with std of 𝜎𝑟 were convolved with a 2-D

zero-mean Gaussian probability distribution function (pdf) with std of 𝜎𝑓 . The re-

sulting array was used as the phase of a field with a Gaussian amplitude. As long as

𝜎2𝑟/(4𝜋𝜎
2
𝑓 ) ≫ 1, the coherence function of the resulting field is very nearly Gaussian

with a coherence radius 𝜌𝑔 = 4𝜋1/2𝜎2𝑓/𝜎𝑟. This method differed from that of Xiao and

Voelz in that these fields were not propagated to the receiver, but directly used in the

coupling efficiency calculation. This allowed us to simulate fields of arbitrary beam

size. One drawback of this method is that the coherence radius is severely limited by

𝜎𝑓 which can be no larger than about half the grid size. To get around this problem,

random subharmonics were added to the frequency spectrum of the phase screens in

a manner similar to that described by Lane et al. [51] With a sufficient number of

subharmonics, fields with any desired coherence radius can be generated. An example

of the amplitude and phase of a field generated with this method using Listing C.9

in shown in Fig. 20.

125



10−2 10−1 100 101 102
−100

−50

0

50

100

150

200

250

300

D/(2ρg)

er
ro

r
[%

]

wg = ∞
wg = 5D
wg = 2D
wg = D
wg = D/2

Figure 21. Difference between simulation data and the algebraic approximation for the
normalized coupling efficiency variance of non-speckled fields with differing values of
the average beam radius 𝑤𝑔, coherence radius 𝜌𝑔, and 𝑅𝑔 = ∞. The simulation data
was normalized by the square of the numerical evaluation of Eq. (5.2.1) using the exact
back-propagated fiber mode given by Eq. (5.2.4). The error is referenced to Eq. (5.3.27).
Error bars represent two std and were empirically derived from the data.

The observed discrepancy between Eq. (5.3.27) and the results from the simulation

runs are displayed in Fig. 21 for several values of 𝑤𝑔 in terms of percent error. The

simulation data were normalized using the square of the numerically derived mean

coupling efficiency with the exact fiber mode. When 𝐷/(2𝜌𝑔) < 2, the predicted value

is about half the simulation result. However, for 𝐷/(2𝜌𝑔) > 2 the difference between

the analytic expression and the simulations continuously diverges. The major cause

of this divergence can be seen in the form of Eq. (5.3.27). As 𝜌𝑔 tends toward zero,

�̃�2𝜂 should tend toward one [75, 79], but Eq. (5.3.27) instead tends toward infinity.

Evidently, using the method of cumulants to only the second order is insufficient

to accurately represent the fourth-order MCF at small coherence sizes. While this

problem could be addressed by using the method of cumulants to the fourth order,

the mathematics involved quickly becomes quite daunting. An alternative method is
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Figure 22. The effect of compensation given by Eq. (5.3.28) on the algebraic approxima-
tion of Eq. (5.3.27) for the coupling variance of non-speckled fields with differing values
of the average beam radius 𝑤𝑔, coherence radius 𝜌𝑔, and 𝑅𝑔 =∞. Simulation results are
indicated by circles. Error bars represent two std and were empirically derived from
the data.

to empirically adjust the expression. One suggested adjustment is given by

𝜎2𝜂,fit =
15

7.5 +

(
𝐷

2𝜌𝑔

)2.3 . (5.3.28)

The effect of multiplying Eq. (5.3.27) by Eq. (5.3.28) along with the square of the

optimally compensated Eq. (5.2.15) is shown in Fig. 22. With compensation, the

simulations results now tend to fall within 40% the predicted value, with more than

half falling within 20%.

5.4 Conclusion

In this work, analytic expressions for both the coupling efficiency mean and vari-

ance for GSM beams into single-mode optical fibers have been derived and evaluated.

These expressions include both exact solutions to the relevant integral equations and
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algebraic approximations. While several simplifying approximations were needed to

derive these expressions, their effects on the accuracy of the expressions were eval-

uated through both numerical integration and Monte Carlo simulations. While the

algebraic expressions initially demonstrated poor agreement when compared to the

numeric, analytic, or simulation results, compensation based on both asymptotic be-

havior and empirical computer simulation results was shown to greatly increase the

concurrence. In the case of the mean coupling efficiency, errors as low as 0.8% were

achieved over a wide range of coherence sizes and beam sizes. Even nominal compen-

sation expressions were able to keep the accuracy of the mean coupling efficiency to

within 5% over varying coherence sizes, beam sizes, and speckle content.

Different expressions for the mean squared normalized coupling efficiency variance

were derived based on the speckle content of the field including fully developed speckle,

well-developed speckle, and no speckle. With compensation, agreement between sim-

ulations and the analytic expression for well-developed speckle was generally better

than 20%. At the other end of the speckle spectrum, compensation of the analytic

expression for coupling efficiency variance of fields with no speckle content generally

agreed with simulation results to better than 40%, with more than half of the results

agreeing to better than 20%. While optimizing the compensation for specific beam

parameters have the potential to further increase the accuracy, the main limiting fac-

tor in these accuracy values is the random nature of the computer simulation results.

A greater number of simulation runs should further reduce the discrepancy spread

and allow for more accurate compensation.

These results promise to be useful over a wide range of applications, including

free-space optical communication, stellar interferometry, ladar/lidar, and wavefront

sensing. They can aid in the characterization, performance modeling, and error anal-

ysis of optical systems that involve the coupling of random light into single-mode
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optical fibers. This study enables further characterization of the effect of random

light that falls between fully developed speckle and no speckle. The methods used in

this chapter may also be used to derive expressions for the average coupling efficiency

for partially coherent fields other than GSM beams, and also when multi-mode optical

fibers are used.
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VI. General SRI Noise Model

6.1 Introduction

While most wavefront sensors used in adaptive optics (AO) measure the phase gra-

dient [63,64,98], or even phase Laplacian [71], of the incident field, the self-referencing

interferometer (SRI) measures the incident field itself [65]. While any of these methods

are sufficient when using AO with weak atmospheric turbulence where the distortions

are mainly limited to the field phase, the situation is different in strong turbulence

where the field manifests large distortions in both amplitude (known as scintillation)

and phase. If the scintillation is large enough to occasionally make the field go to zero,

the phase will exhibit branch points wherever the amplitude is zero, and ±2𝜋 phase
cuts connecting these branch points [31, 34]. These branch points and cuts in the

field phase are due to a rotational component of the phase gradient that is lost when

standard least-squares techniques are used to reconstruct the field phase, and there-

fore AO performance is severely degraded with increasing scintillation. Even when

using reconstructors that account for the rotational part of the phase gradient [33],

AO performance had been shown to still degrade with increasing scintillation, even

in the absence of additive measurement noise [3–5].

Since the SRI measures the field directly, the phase can be calculated from these

measurements without the need for phase reconstruction. In the absence of measure-

ment noise, this phase calculation is insensitive to scintillation and depends only on

the spatial and temporal averaging used in the field estimation measurement [5,6,65].

This makes the SRI a better choice in an adaptive optics system when scintillation

may be an issue. While the SRI is immune to scintillation in theory, such is not

the case in practice. Experiments using an SRI, or its predecessor the phase shift-

ing point-diffraction interferometer, have demonstrated a decrease in performance as
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scintillation increased [19, 60]. This is attributed to the measurement noise that is

inherent in any real system. As a result, measurement error must be taken into ac-

count in any true performance model of the SRI. The more accurate the performance

model, the more useful it is in making performance trade-offs when designing a real

AO system.

While a few SRI performance models have been published, they do not take

into account all of the potential error sources. A noise model by Rhoadarmer and

Barchers [66] takes into account shot noise, read noise, quantization noise, and ampli-

fied spontaneous emission (ASE) of the optical fiber, but neglects scintillation and the

variability of optical fiber coupling efficiency. A different model by Ellis [25] accounts

for shot noise and scintillation, but neglects all other noise sources. The intent of

this chapter is to develop a more complete noise model that can account for all of the

relevant noise sources. Section 6.2 presents on overview of the workings of an SRI,

and defines the relevant parameters. A noise model of the SRI, defined in terms of

phase error variance, is then derived in Sec. 6.3. As this noise model strongly depends

on the probability distribution function (pdf) of some of the noise sources, specific

examples are given for both weak and strong variations. These noise models are then

validated through the use of Monte Carlo simulation runs in Sec. 6.4, and examples

of its use are given in Sec. 6.5. Concluding remarks are given in Sec. 6.6.

6.2 SRI Overview

A conceptual diagram of an SRI is shown in Fig. 23. This configuration make use

of four-bin phase shifting interferometry (PSI) to make the phase measurement [56].

While the phase shifting can be performed spatially, temporally, or mixed, the spatial

configuration shown in Fig. 23 results in smaller error in dynamic situations [19, 67],

and forms the basis of analysis for this chapter. The input field is first split between
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Figure 23. Conceptual diagram of a SRI using spatial 4-bin PSI. From Fig. 32 of [25].

a signal leg and a reference leg. The field in the signal leg can be represented as

𝑈sig(𝝆, 𝑡) =
√
𝛽𝑈in(𝝆, 𝑡), (6.2.1)

where 𝝆 is two-dimensional coordinate vector perpendicular to the direction of prop-

agation, 𝑡 is the temporal coordinate, and 𝛽 represents the proportion of the input

power allocated by the first beam splitter to the signal leg. The light in the reference

leg is then coupled into a single-mode optical fiber, which only passes the LP01 mode

of the incident field. Once this reference field has been collimated by the fiber output

lens (assumed to be identical to the fiber input lens), it can be represented as

𝑈ref(𝝆, 𝑡) =
√
1− 𝛽𝑏0(𝑡)ℳ0(𝝆), (6.2.2)

where 𝑏0(𝑡) is the fiber coupling coefficient defined as

𝑏0(𝑡) =

∫∫
𝒜𝒫

𝑈in(𝝆, 𝑡)ℳ∗
0(𝝆) d

2𝝆, (6.2.3)

where 𝒜𝒫 is the area over the fiber coupling lens, andℳ0(𝝆) is the back-propagated

LP01 fiber mode given by Eq. (5.2.4). The remaining 50% beam splitters and the
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quarter wave plate are intended to produce 𝜋/2 phase shifts between the four different

interference paths. The resulting field intensity over each of the four detectors can

then be represented as

𝐼𝑛(𝝆, 𝑡) =
1

4
∣𝑈sig(𝝆, 𝑡) + 𝑈ref(𝝆, 𝑡) exp [−j(𝑛− 1)𝜋/2]∣2

=
1

4

{
𝛽𝐼in(𝝆, 𝑡) + (1− 𝛽) ∣𝑏0(𝑡)∣2ℳ2

0(𝝆) + 2
√
𝛽(1− 𝛽)𝐼in(𝝆, 𝑡) ∣𝑏0(𝑡)∣ℳ0(𝝆)

× cos [𝜙in(𝝆, 𝑡)− 𝜙𝑏(𝑡) + (𝑛− 1)𝜋/2]
}
, (6.2.4)

where 𝑛 ∈ {1, 2, 3, 4}, 𝐼in = ∣𝑈in∣2, 𝜙in = arg{𝑈in}, and 𝜙𝑏 = arg{𝑏0}. An example
of the instantaneous intensity over each detector is shown in Fig. 24. As the 𝜋/2

phase shifts turn the cos in Eq. (6.2.4) to ± cos and ± sin, the input field 𝑈in can be

recovered to within an unimportant phase piston term with

�̂�in(𝝆, 𝑡) =
[𝐼1(𝝆, 𝑡)− 𝐼3(𝝆, 𝑡)] + j [𝐼4(𝝆, 𝑡)− 𝐼2(𝝆, 𝑡)]√

𝛽(1− 𝛽) ∣𝑏0(𝑡)∣ℳ0(𝝆)
. (6.2.5)

The phase of �̂�in is then derived using

𝜙(𝝆, 𝑡) = arctan

(
Im{�̂�in(𝝆, 𝑡)}
Re{�̂�in(𝝆, 𝑡)}

)
. (6.2.6)

In actuality, the detectors do not measure intensity, but photo-counts that have

mean values proportional to the spatially and temporally integrated intensity over

each detector pixel. Assuming a given incident field where the intensity changes

little and the phase gradient is approximately constant over the spatial and temporal
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Figure 24. Example of the interference patterns that result from using an SRI with
spatial 4-bin PSI

extents of the integration, the mean photo-counts can be expressed as

⟨𝐾𝑛(𝝆𝑖, 𝑡𝑠)⟩ =𝛼
∫
𝜏𝑑

∫∫
𝒜𝑖

𝐼𝑛(𝝆, 𝑡) d
2𝝆 d𝑡

≃𝛼𝑑
2𝜏𝑑
4

{
𝛽𝐼in(𝝆𝑖, 𝑡𝑠) + (1− 𝛽) ∣𝑏0(𝑡𝑠)∣2ℳ2

0(𝝆𝑖) + 2
√
𝛽(1− 𝛽)𝐼in(𝝆𝑖, 𝑡𝑠)

× ∣𝑏0(𝑡𝑠)∣ℳ0(𝝆𝑖) sinc

(
Δ𝜙𝑥𝑖
2𝜋

)
sinc

(
Δ𝜙𝑦𝑖
2𝜋

)
sinc

(
Δ𝜙𝑡𝑖
2𝜋

)

× cos
[
𝜙(𝝆𝑖, 𝑡𝑠) + (𝑛− 1)

𝜋

2

]}
, (6.2.7)

where ⟨⋅⟩ represents ensemble averaging, 𝝆𝑖 is the location of the 𝑖th detector pixel,
𝑡𝑠 is the sample time, 𝛼 = 𝜂𝑞�̄�/(ℎ𝑐) is the proportionality constant, 𝜂𝑞 is the detector

quantum efficiency, �̄� is the central wavelength of the incident light (assumed quasi-

monochromatic), ℎ = 6.626 × 10−34 J-s is Planck’s constant, 𝑐 = 2.998 × 108 m/s
is the speed of light, 𝜏𝑑 is the detector integration time, 𝒜𝑖 is the area over the 𝑖th
detector pixel of width 𝑑, sinc(𝑥) = sin(𝜋𝑥)/(𝜋𝑥), Δ𝜙 is the change in phase over the

spatial and temporal extents of the integrations, and 𝜙 is the spatial and temporal

134



average phase over the each pixel. Samples of the incident field can be estimated

from these photo-counts to within a scaling factor that depends on the pixel location

with

�̂�in(𝝆𝑖, 𝑡𝑠) = [𝐾1(𝝆𝑖, 𝑡𝑠)−𝐾3(𝝆𝑖, 𝑡𝑠)] + j [𝐾4(𝝆𝑖, 𝑡𝑠)−𝐾2(𝝆𝑖, 𝑡𝑠)] , (6.2.8)

while the phase measurement is

𝜙(𝝆𝑖, 𝑡𝑠) = arctan

⎧⎨
⎩
Im
[
�̂�in(𝝆𝑖, 𝑡𝑠)

]
Re
[
�̂�in(𝝆𝑖, 𝑡𝑠)

]
⎫⎬
⎭ . (6.2.9)

6.3 Phase Error Variance

In the absence of noise, the phase estimate given by Eq. (6.2.9) would be pre-

cisely equal to 𝜙(𝝆𝑖, 𝑡𝑆). However, noise is inescapable due not only to the fact the

photo-counts 𝐾𝑛 must be integer values, but also for a given input they are Poisson

distributed [38]. These photo-counts are additionally stochastic in that 𝐼in, 𝑏0, and

∇𝜙 are all random, so the expected number of photo-counts is also random. Beyond
the randomness due to the photo-counts themselves, there will be additional noise

sources such as those caused by the electrical amplification of the photo-counts (read

noise) and the assigning of the output value to a digitized bin (quantization noise).

All of these noise sources play into the overall accuracy of the SRI measurement,

and must be accounted for when predicting SRI performance for a given situation.

Since the SRI measurements are typically used to drive a single deformable mirror,

understanding the phase error variance is necessary to estimate overall system per-

formance [73].

The purpose of this section is to derive a general expression for the phase error

variance of an SRI. This is accomplished by first deriving an expression for the phase
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error variance conditioned on a given input, then averaging over the random variables

that comprise this expression. As there is a significant difference between when the

variations are large as opposed to small, both of these cases will be analyzed. Specific

examples are then given for conditions that may be expected in practice.

6.3.1 Conditioned Phase Error Variance.

The phase estimate error is defined as

𝜀(𝝆𝑖, 𝑡𝑠) = 𝜙(𝝆𝑖, 𝑡𝑠)− 𝜙(𝝆𝑖, 𝑡𝑠), (6.3.1)

and can be found using Eq. (6.2.9) by first multiplying Eq. (6.2.8) by exp[−j𝜙(𝝆𝑖, 𝑡𝑠)].
The size of the error depends largely on total number of photo-counts accumulated

across all four PSI bins. When there are a large number of total photo-counts,

Eq. (6.2.8) has a large number of degrees of freedom, and therefore should make

a good estimate of the incident field. In this case, the phase error variance should be

relatively low. However, when there are a low number of total photo-counts, there is

only a limited number of degrees of freedom for the field estimate, so the phase error

variance should be much larger. In the limit of zero total photo-counts, the arctan

function is typically set to return a value of zero regardless of true phase value. Since

the true phase value can take on any value between −𝜋 and 𝜋 with equal probability,
the phase error variance in this case is simply given by

𝜎2𝜀 ≃
𝜋2

3
. (6.3.2)

The phase error variance can be estimated for a large number of total photo-counts
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using the Delta Method given by

Var [𝑓(𝑿)] ≃
∑
𝑖

[
∂𝑓(⟨𝑿⟩)
∂𝑋𝑖

]2
Var[𝑋𝑖] +

∑
𝑖

∑
𝑗 ∕=𝑖

[
∂𝑓(⟨𝑿⟩)
∂𝑋𝑖

] [
∂𝑓(⟨𝑿⟩)
∂𝑋𝑗

]
Cov[𝑋𝑖𝑋𝑗 ],

(6.3.3)

where 𝑓(𝑿) is an arbitrary smooth function of the random vector 𝑿, Var[⋅] is the
variance operator, and Cov[⋅] is the covariance operator [16]. From Eq. (6.2.9), 𝜙

is a function of two random variables, the real part of the field estimate �̂�𝑅 and

the imaginary part of the field estimate �̂�𝐼 . It is simple to show �̂�𝑅 and �̂�𝐼 are

independent, and therefore uncorrelated, so the phase error variance can be estimated

as

𝜎2𝜀 ≃

⎛
⎜⎝

〈
�̂�𝐼

〉
〈
�̂�𝑅

〉2
+
〈
�̂�𝐼

〉2
⎞
⎟⎠
2

𝜎2
�̂�𝑅
+

⎛
⎜⎝

〈
�̂�𝑅

〉
〈
�̂�𝑅

〉2
+
〈
�̂�𝐼

〉2
⎞
⎟⎠
2

𝜎2
𝑈𝐼
. (6.3.4)

The phase error is zero mean, so the imaginary part of the field estimate should also

be zero mean. Equation (6.3.4) therefore reduces to

𝜎2𝜀 ≃
𝜎2
�̂�𝐼〈

�̂�𝑅

〉2 . (6.3.5)

For a given input and neglecting other measurement noise, �̂�𝑅 and �̂�𝐼 are each the

difference between two independent Poisson random variables. As such, they follow

a Skellam distribution giving [81]

〈
�̂�𝑅

〉
= ⟨𝐾1⟩ − ⟨𝐾3⟩ , (6.3.6)

𝜎2
�̂�𝐼
= ⟨𝐾2⟩+ ⟨𝐾4⟩ . (6.3.7)
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Using Eq. (6.2.7), and inserting Eqs. (6.3.6) and (6.3.7) into Eq. (6.3.5) produces

𝜎2𝜀(𝝆𝑖, 𝑡𝑠) ≃
𝛼𝑑2𝜏𝑑
2

[
𝛽𝐼in(𝝆𝑖, 𝑡𝑠) + (1− 𝛽) ∣𝑏0(𝑡𝑠)∣2ℳ2

0(𝝆𝑖)
]

/[
𝛼2𝑑4𝜏 2𝑑𝛽(1− 𝛽)𝐼in(𝝆𝑖, 𝑡𝑠) ∣𝑏0(𝑡𝑠)∣2ℳ0(𝝆𝑖)

2

× sinc2
(
Δ𝜙𝑥𝑖
2𝜋

)
sinc2

(
Δ𝜙𝑦𝑖
2𝜋

)
sinc2

(
Δ𝜙𝑡𝑖
2𝜋

)]
. (6.3.8)

By including the additional measurement noise and using

∣𝑏0(𝑡𝑠)∣2 = 𝜂(𝑡𝑠)

∫∫
𝒜𝒫

𝐼in(𝝆, 𝑡𝑠) d
2𝝆, (6.3.9)

where 𝜂(⋅) is the instantaneous fiber coupling efficiency, Eq. (6.3.8) can be expressed
as

𝜎2𝜀 ≃
𝛽𝐼𝑖 + (1− 𝛽)𝜂𝑖𝐼 + 2𝜎

2
meas/(𝛼𝑑

2𝜏𝑑)

2𝛼𝑑2𝜏𝑑𝛽(1− 𝛽)𝐼𝑖𝜂𝑖𝐼 sinc
2
(
Δ𝜙𝑥𝑖
2𝜋

)
sinc2

(
Δ𝜙𝑦𝑖
2𝜋

)
sinc2

(
Δ𝜙𝑡𝑖
2𝜋

) , (6.3.10)

where 𝐼𝑖 = 𝐼in(𝝆𝑖, 𝑡𝑠), 𝜂𝑖 = 𝒜𝒫ℳ2
0(𝝆𝑖)𝜂(𝑡𝑠), 𝐼 = 1

𝒜𝒫

∫∫
𝒜𝒫

𝐼in(𝝆, 𝑡𝑠) d
2𝝆, and 𝜎2meas

is the additional measurement error. Equation (6.3.10) gives the conditional error

variance of the 𝑖th detector pixel, and is the basis of all further analysis. This ex-

pression can be identified with 1/𝑆𝑁𝑅2𝑀 , where 𝑆𝑁𝑅𝑀 is defined by Rhoadarmer

and Barchers [66, Eq. (17)]. While Rhoadarmer and Barchers use field Strehl as

their performance metric instead of phase error variance, this shows that both are

dependent on equivalent expressions for the signal-to-noise ratio.

6.3.2 Unconditioned Phase Error Variance.

While Eq. (6.3.10) may be sufficient when using an SRI to measure static abber-

ations, in many applications, such as AO, the incident field is dynamic so 𝐼𝑖, 𝜂𝑖, 𝐼,
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and ∇𝜙 may be random to one extent or another. Since they may all be considered

independent of each other, the unconditioned phase error variance may be found from

Eq. (6.3.10) using the conditional variance identity which can be expressed as

Var[𝑋] = ⟨Var[𝑋∣𝑌 ]⟩+Var [⟨𝑋∣𝑌 ⟩] , (6.3.11)

where 𝑋∣𝑌 means the random variable 𝑋 is conditioned on the random variable

𝑌 [16]. The unconditioned phase error variance can therefore be found by averaging

𝜎2𝜀 over the component random variables in turn. Since this averaging depends on the

nature of the component random variables, it is necessary to analyze two different

conditions. The first is when there is low probability of any of the random variables

to result in near zero total photo-counts in the phase calculation. The second is when

there is significant probability that one or more of the random variables may results

in near zero photo-counts.

6.3.2.1 Small variations.

As long as the total number of photo-counts is sufficiently large, and there is

little probability that the component random variables will cause the total number

of photo-counts to fall to near zero, the 𝜎2𝜀 for a given input is well approximated

by Eq. (6.3.10). One example of this condition is when the SRI is used in a closed-

loop AO system with weak atmospheric turbulence. While the exact distributions of

𝐼𝑖, 𝜂𝑖, 𝐼, and ∇𝜙 may be unknown, the averaging over these random variables can

be approximated using Taylor expansion about the mean. The two required Taylor

expansions in this case are

〈
1

𝑋

〉
≃ 1

⟨𝑋⟩
(
1 + �̃�2𝑋

)
, (6.3.12)
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Figure 25. The error due to the approximation of Eq. (6.3.13) assuming a zero-mean
Gaussian random variable

〈
1

sinc2(𝑋)

〉
≃1 + 𝜋2𝜎2𝑋

3
, (6.3.13)

where �̃�2𝑋 = 𝜎2𝑋/ ⟨𝑋⟩2, and Eq. (6.3.13) assumes ⟨𝑋⟩ = 0. Using these approximations

with Eq. (6.3.10) produces

𝜎2𝜀 ≃
[
1 +
𝒟𝜙(𝑑)
12

]2 [
1 +
𝒟𝑡(𝜏𝑑)
12

] [
𝛽 ⟨𝐼𝑖⟩ (1 + �̃�2𝜂𝑖)(1 + �̃�2𝐼 ) + (1− 𝛽) ⟨𝜂𝑖⟩

〈
𝐼
〉
(1 + �̃�2𝐼𝑖)

+
2𝜎2meas(1 + �̃�2𝐼𝑖)(1 + �̃�2𝜂𝑖)(1 + �̃�2

𝐼
)

𝛼𝑑2𝜏𝑑

] /[
2𝛼𝑑2𝜏𝑑𝛽(1− 𝛽) ⟨𝐼𝑖⟩ ⟨𝜂𝑖⟩

〈
𝐼
〉]

, (6.3.14)

where 𝒟𝜙(⋅) and 𝒟𝑡(⋅) are respectively the spatial and temporal phase structure func-
tions of the incident field. Finding the overall phase error variance of the entire

detector requires further integration over the values of ⟨𝐼𝑖⟩ and ⟨𝜂𝑖⟩.
Due to aperture averaging, the fluctuations of 𝐼 should always be small, so av-

eraging over these fluctuations should always be well approximated by Eq. (6.3.12).

However, the accuracy of the estimate given in Eq. (6.3.13) depends in large part on

the pdf of 𝑋. Since the left side of the equation has a pole at every non-zero integer

value of 𝑥, the pdf of 𝑋 must be well contained within the range ±1, otherwise the
small variations assumption will not apply. This condition can be analyzed by assum-
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ing 𝑋 is zero-mean Gaussian distributed, then setting any probability values outside

±3.5𝜎𝑋 to zero. Since 99.95% of the probability falls within ±3.5𝜎𝑋 , disregarding
everything outside this range only produces error on the order of 0.1%. Using this

assumption, the error due to the approximation of Eq. (6.3.13) is displayed in Fig. 25.

While the error is under 1% for 𝜎𝑋 < 0.15, it rapidly increases for 𝜎𝑋 > 0.15.

It is possible to compensate for this error by using a function that closely resem-

bles the error. Figure 25 shows the best fit to −100(𝑏 𝜎𝑋)𝑛, where 𝑏 = 2.55 and

𝑛 = 4.86 were found using nonlinear least-squares techniques. Making use of this

compensation, the approximation of Eq. (6.3.13) can be improved to

〈
1

sinc2(𝑋)

〉
≃ 1 + 𝜋2𝜎2𝑋/3

1− (6.51𝜎2𝑋)2.43
, (6.3.15)

which is accurate to under 1% for 𝜎𝑋 ≤ 1/4. Given 𝜎2𝑋 = 𝒟𝜙(𝑑)/(4𝜋2), the constraint
on 𝜎𝑋 becomes a constraint on the phase structure function of

𝒟𝜙(𝑑) ≤ 𝜋2/4 (6.3.16)

Assuming a typical spatial phase structure function given by 𝒟𝜙(𝑑) = 6.88(𝑑/𝑟0)
5/3,

where 𝑟0 is the atmospheric coherence length defined by Eq. (2.4.41) [73], it becomes

a constraint on the subaperture size as 𝑑 ≤ 0.54𝑟0. (A similar constraint applies

to the temporal phase structure function.) This constraint is typically satisfied in

practice, especially during closed-loop AO operation, so it does not unduely limit the

applicability of this analysis. With this compensation, the expression for the phase
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error variance assuming small variations becomes

𝜎2𝜀 ≃
[
1 +
𝒟𝜙(𝑑)
12

]2 [
1 +
𝒟𝑡(𝜏𝑑)
12

] [
𝛽 ⟨𝐼𝑖⟩ (1 + �̃�2𝜂𝑖)(1 + �̃�2𝐼 ) + (1− 𝛽) ⟨𝜂𝑖⟩

〈
𝐼
〉
(1 + �̃�2𝐼𝑖)

+
2𝜎2meas(1 + �̃�2𝐼𝑖)(1 + �̃�2𝜂𝑖)(1 + �̃�2

𝐼
)

𝛼𝑑2𝜏𝑑

]/⎛⎝
{
1− [𝒟𝜙(𝑑)]

2.43

80

}2{
1− [𝒟𝑡(𝜏𝑑)]

2.43

80

}

× 2𝛼𝑑2𝜏𝑑𝛽(1− 𝛽) ⟨𝐼𝑖⟩ ⟨𝜂𝑖⟩
〈
𝐼
〉)

. (6.3.17)

This is valid so long as ∇𝜙 is well approximated as being Gaussian distributed. It has
been demonstrated that a Gaussian distribution for ∇𝜙 rests on a sound theoretical
basis [96], so there is a good reason to believe this expression is valid subject to the

constraints described above.

One interesting item of note is if 𝑋 is a log-normally distributed, then Eq. (6.3.12)

is not an approximation, but an exact expression. Since the intensity fluctuations

due to weak atmospheric turbulence are well represented with a log-normal distribu-

tion [2], the expression given by Eq. (6.3.17) should be especially good when the 𝐼𝑖

fluctuations are only caused by weak atmospheric turbulence.

6.3.2.2 Large variations.

While the small variations approximation of the previous section should always

be sufficient for 𝐼 and ∇𝜙, subject to the condition that 𝜎2𝜀 must always be ≤ 𝜋2/3,

such is not necessarily the case with 𝐼𝑖 and 𝜂𝑖. There are many conditions that would

cause the pdf of 𝐼𝑖 and/or 𝜂𝑖 to have significant probability near zero (e.g., a negative

exponential distribution) thereby invalidating the large total photo-count assumption.

In these cases, averaging over these random variable must take into account those

situations where 𝜎2𝜀 is better approximated by Eq. (6.3.2) than Eq. (6.3.10).

If the SRI is used in a closed-loop AO system and the incident light displays
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fully developed speckle, then 𝜂𝑖 should exhibit small fluctuations while 𝐼𝑖 obeys the

negative exponentially distribution [40] given by

𝑝𝑋(𝑥) =
1

⟨𝑋⟩ exp
(
− 𝑥

⟨𝑋⟩
)
. (6.3.18)

Once Eq. (6.3.10) has been averaged over 𝜂𝑖, 𝐼, and ∇𝜙 as described in the previous
section, it may be approximated as

𝜎2𝜀∣𝐼𝑖 ≃

⎧⎨
⎩
𝜋2

3
if 𝐼𝑖 ≤ 𝑐𝐼

𝑎𝐼 − 𝑏𝐼 or 𝑎𝐼 ≤ 𝑏𝐼 ,

𝜋2

3

(
𝑏𝐼𝐼𝑖 + 𝑐𝐼
𝑎𝐼𝐼𝑖

)
otherwise,

(6.3.19)

where

𝑎𝐼 =

{
1− [𝒟𝜙(𝑑)]

2.43

80

}2{
1− [𝒟𝑡(𝜏𝑑)]

2.43

80

}
2𝜋2

3
𝑑2𝜏𝑑𝛼𝛽(1− 𝛽) ⟨𝜂𝑖⟩

〈
𝐼
〉

(6.3.20)

𝑏𝐼 =

[
1 +
𝒟𝜙(𝑑)
12

]2 [
1 +
𝒟𝑡(𝜏𝑑)
12

]
𝛽(1 + �̃�2𝜂𝑖)(1 + �̃�2𝐼 ) (6.3.21)

𝑐𝐼 =

[
1 +
𝒟𝜙(𝑑)
12

]2 [
1 +
𝒟𝑡(𝜏𝑑)
12

] [
(1− 𝛽) ⟨𝜂𝑖⟩

〈
𝐼
〉
+
2𝜎2meas(1 + �̃�2𝜂𝑖)(1 + �̃�2

𝐼
)

𝛼𝑑2𝜏𝑑

]
.

(6.3.22)

The unconditioned phase error variance is then evaluated as

𝜎2𝜀 ≃
∫ ∞

0

𝜎2𝜀∣𝐼𝑖𝑝𝐼𝑖(𝐼𝑖) d𝐼𝑖

=

⎧⎨
⎩

𝜋2

3
if 𝑎𝐼 ≤ 𝑏𝐼 ,

𝜋2

3

{
1−
(
1− 𝑏𝐼

𝑎𝐼

)
exp

[
− 𝑐𝐼
(𝑎𝐼 − 𝑏𝐼) ⟨𝐼𝑖⟩

]

+
𝑐𝐼

𝑎𝐼 ⟨𝐼𝑖⟩𝐸1
[

𝑐𝐼
(𝑎𝐼 − 𝑏𝐼) ⟨𝐼𝑖⟩

]}
otherwise,

(6.3.23)
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where 𝐸1(⋅) is the exponential integral defined as

𝐸1(𝑥) =

∫ ∞

𝑥

𝑡−1e−𝑡 d𝑡. (6.3.24)

A similar calculation is used in the case where 𝐼𝑖 has the small fluctuations (e.g.,

weak turbulence) while 𝜂𝑖 is exponentially distributed (e.g., open-loop AO operation

when the coherence area of the light is much smaller than the receiver area [91]). The

expression for 𝜎2𝜀 in this case, as well as for additional probability distributions of 𝐼𝑖

and 𝜂𝑖, are found in Appendix B.

If both 𝐼𝑖 and 𝜂𝑖 exhibit negative exponential statistics, then the phase error

variance must be explicitly integrated over both of their distribution functions. This

situation might be expected when the SRI is used in an open-loop AO system when

the incident light exhibits fully developed speckle. An expression for 𝜎2𝜀 conditioned

only on 𝜂𝑖 for this case can be found directly from Eq. (6.3.23) by setting 𝜎2𝜂𝑖 to zero,

and replacing ⟨𝜂𝑖⟩ with 𝜂𝑖. Making these changes it can be expressed as

𝜎2𝜀∣𝜂𝑖 ≃

⎧⎨
⎩

𝜋2

3
if 𝜂𝑖 ≤ 𝑏𝜂

𝑎𝜂
or 𝑎𝜂 ≤ 𝑏𝜂,

𝜋2

3

[
1−
(
1− 𝑏𝜂

𝑎𝜂𝜂𝑖

)
exp

(
−𝑐𝜂𝜂𝑖 + 𝑑𝜂
𝑎𝜂𝜂𝑖 − 𝑏𝜂

)

+
𝑐𝜂𝜂𝑖 + 𝑑𝜂
𝑎𝜂𝜂𝑖

𝐸1

(
𝑐𝜂𝜂𝑖 + 𝑑𝜂
𝑎𝜂𝜂𝑖 − 𝑏𝜂

)]
otherwise,

(6.3.25)

where

𝑎𝜂 =

{
1− [𝒟𝜙(𝑑)]

2.43

80

}2{
1− [𝒟𝑡(𝜏𝑑)]

2.43

80

}
2𝜋2

3
𝑑2𝜏𝑑𝛼𝛽(1− 𝛽) ⟨𝐼𝑖⟩

〈
𝐼
〉

(6.3.26)

𝑏𝜂 =

[
1 +
𝒟𝜙(𝑑)
12

]2 [
1 +
𝒟𝑡(𝜏𝑑)
12

]
𝛽 ⟨𝐼𝑖⟩ (1 + �̃�2𝐼 ) (6.3.27)

𝑐𝜂 =

[
1 +
𝒟𝜙(𝑑)
12

]2 [
1 +
𝒟𝑡(𝜏𝑑)
12

]
(1− 𝛽)

〈
𝐼
〉

(6.3.28)
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𝑑𝜂 =

[
1 +
𝒟𝜙(𝑑)
12

]2 [
1 +
𝒟𝑡(𝜏𝑑)
12

]
2𝜎2meas(1 + �̃�2

𝐼
)

𝛼𝑑2𝜏𝑑
. (6.3.29)

Integrating this expression over the pdf of Eq. (6.3.18) produces

𝜎2𝜀 ≃

⎧⎨
⎩

𝜋2

3
if 𝑎𝜂 ≤ 𝑏𝜂,

𝜋2

3

{
1−
∫ ∞

𝑏𝜂/𝑎𝜂

[(
1− 𝑏𝜂

𝑎𝜂𝜂𝑖

)
exp

(
−𝑐𝜂𝜂𝑖 + 𝑑𝜂
𝑎𝜂𝜂𝑖 − 𝑏𝜂

)

− 𝑐𝜂𝜂𝑖 + 𝑑𝜂
𝑎𝜂𝜂𝑖

𝐸1

(
𝑐𝜂𝜂𝑖 + 𝑑𝜂
𝑎𝜂𝜂𝑖 − 𝑏𝜂

)]
1

⟨𝜂𝑖⟩ exp
(
− 𝜂𝑖
⟨𝜂𝑖⟩
)
d𝜂𝑖

}
otherwise,

(6.3.30)

where the remaining integral must be evaluated numerically.

6.4 Monte Carlo Simulations

The accuracy of the above phase error variance models were evaluated through

Monte Carlo analysis. While these simulation runs were not intended to be exhaus-

tive, they serve to validate the methodology used in Sec. 6.3. Further validation of

these models may be accomplished through wave optics simulation runs.

The Monte Carlo runs were designed to only evaluate the effect of the randomness

of 𝐼𝑖 and 𝜂𝑖. Consequently, 𝐼 was set equal to ⟨𝐼𝑖⟩ with zero variance, 𝒟𝜙 and 𝒟𝑡 were
set to 0, and 𝜎2meas was also set to 0. Setting 𝐼 to ⟨𝐼𝑖⟩ with zero variance is similar
to the situation where the average intensity is constant over the receiver, and the

coherence area of the original incident light is much smaller than the receiver area.

This results in many independent intensity values being used to calculate 𝐼, thus

making it a good approximation of ⟨𝐼𝑖⟩. Since the variance of 𝐼 would be much less
than 1, it would have an insignificant impact on 𝜎2𝜀 . 𝒟𝜙 and 𝒟𝑡 were set to zero since
they do not impact the overall shape of 𝜎2𝜀 curve, but only shift where it is located.

The additive measurement noise was ignored to focus on the physics of the problem

over the engineering. Furthermore, 𝛽 was set to ⟨𝜂𝑖⟩ /(1 + ⟨𝜂𝑖⟩) to maximize fringe
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Figure 26. Comparison between Eq. (6.3.10) and Monte Carlo simulation runs for a
static input.

visibility, and it was assumed 𝒜𝒫ℳ2
0(𝝆𝑖) = 1 so 𝜂𝑖 = 𝜂(𝑡𝑠). One million random

draws of 𝐼𝑖, 𝜂𝑖, and 𝜙 were used for each data point, where 𝐼𝑖 and 𝜂𝑖 followed the

desired distribution while 𝜙 was uniformly distributed between −𝜋 and 𝜋.

A comparison between the conditioned phase error variance given by Eq. (6.3.10),

and the results from the Monte Carlo runs is displayed in Fig. 26. In this plot, as

well as all subsequent plots, ⟨𝐾⟩ = ⟨𝐾1⟩ + ⟨𝐾2⟩ + ⟨𝐾3⟩ + ⟨𝐾4⟩. As expected, when
there is a large number of total photo-counts, the model and the simulation runs

demonstrate excellent agreement. Also, when there are very few total photo-counts,

the simulations asymptote to 𝜋2/3 as expected. The biggest discrepancies occur in

the region where the two asymptotes intersect. With relatively few photo-counts, the

model overestimates the true phase variance with a maximum discrepancy of 17.5%

where the asymptotes intersect. Once the phase error variance model switches to

Eq. (6.3.10), the model underestimates the Monte Carlo results by up to 15%, but

then converges with the simulations to well within 1%.

An example of the unconditioned phase error variance where the small fluctuations

assumption holds is displayed in Fig. 27. The conditioned phase error variance line

from Fig. 26 is included as a basis for comparison. For these runs, the distribution
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Figure 27. Comparison between Eq. (6.3.14) and Monte Carlo simulation runs for small
variations of 𝐼𝑖 and 𝜂𝑖.

for 𝐼𝑖 was log-normal with a normalized variance of 1, and the distribution for 𝜂𝑖

was a shifted exponential. Since the normalized variance for 𝜂𝑖 was much less than

1, it had an insignificant effect of the overall results. This plot again demonstrates

excellent agreement (less than 1% discrepancy) between the model and simulation in

both of the asymptotic regimes, where the large asymptote is given by Eq. (6.3.17).

At the point where the asymptotes intersect, the model overestimates the simulations

by 22.5%, and then it underestimates the simulations by up to 12% at slightly higher

total photo-counts.

Figure 28 displays the Monte Carlo simulation results when 𝐼𝑖 follows a negative

exponential distribution while the 𝜂𝑖 variations remain small. The unconditioned

variance is given by Eq. (6.3.23), and the conditioned variance line from Fig. 26 is

included as a basis for comparison. There is good agreement over nearly the entire

range of total photo-count values. The model overestimates the simulation results by

a maximum of 11% and agrees to within 5% at larger total photo-count levels. Both

the model and the simulations indicate the large increase in phase error variance

due to the significant probability of receiving little to no photo-counts in a given

subaperture, regardless of the expected total number of photo-counts.
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Figure 28. Comparison between Eq. (6.3.23) and Monte Carlo simulation runs when 𝐼𝑖

is negative exponentially distributed.
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Figure 29. Comparison between Eq. (6.3.30) and Monte Carlo simulation runs when
both 𝐼𝑖 and 𝜂𝑖 are negative exponentially distributed.
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An example of when both 𝐼𝑖 and 𝜂𝑖 have significant probability near zero is

displayed in Fig. 29. In this case, both 𝐼𝑖 and 𝜂𝑖 are negative exponentially dis-

tributed. The unconditioned error variance line is the result of numerically integrat-

ing Eq. (6.3.30), and the unconditioned error variance line from Fig. 26 is included as

a basis for comparison. The model overestimates the error variance by a maximum

of 9%, while it agrees with the simulations to within 5% at the higher average total

photo-count values.

The good agreement between the phase error variance models and Monte Carlo

simulation runs as demonstrated in Figs. 26–29 indicates that the methodology used

in deriving the above expressions for the phase error variance is sound. As long as

the assumptions used in the above derivations are reasonably close to the truth, these

models should accurately predict the performance of an SRI. Additional simulations

and experiments can be used to test these assumptions to find regions of applicability,

and further refine the models.

6.5 Examples

Predicted SRI performance over a wide range of conditions is indicated in Fig. 30.

This figure highlights the effects of various turbulence strengths from very weak to

very strong, various subaperture sizes relative to the coherence length of the incident

light, and differing signal strength levels. The biggest limiting assumption is that

the coherence time of the light is much longer than the detector integration time

[𝒟𝑡(𝜏𝑑) ≪ 1]. It further assumes a point source beacon, optimal beam splitting

between the SRI reference and beacon legs, a system pupil diameter given by 𝐷 =

20
√
2𝑑, 𝒟𝜙(𝑑) = 6.88(𝑑/𝑟0)

5/3, 𝜎2meas = 0 and
〈
𝐼
〉
= ⟨𝐼𝑖⟩. The coupling efficiency

𝜂𝑖 is assumed to to be negative exponentially distributed (open-loop operation), and

⟨𝜂𝑖⟩ is found using Eq. (5.2.15) with compensation as described in Sec. 5.2.3.1. The
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Figure 30. Effect of turbulence on SRI performance with a point source beacon at
different noise levels. The coupling efficiency pdf is assumed to be negative exponential,
and various intensity probability distributions are compared.

parameters 𝛼 and 𝛽 for the gamma-gamma pdf of Eq. (B.4) are found from [2] using

𝛼 =

{
exp

[
2.0ℛ

(1 + 3.0ℛ6/5)7/6
]
− 1
}−1

(6.5.1)

𝛽 =

{
exp

[
2.0ℛ

(1 + 3.6ℛ6/5)5/6
]
− 1
}−1

, (6.5.2)

whereℛ is the Rytov number as defined in Sec. 2.4.1.6 with weak turbulence occurring
when ℛ ≪ 1.

This figure clearly indicates the effect of scintillation due to strong turbulence on

SRI performance. Whether a log-normal distribution or gamma-gamma distribution

is assumed for the intensity fluctuations, 𝜎2𝜀 increases with increasing ℛ. While 𝜎2𝜀

continues to increase linearly with increasing turbulence strength when using the

log-normal distribution, it saturates near the value that would be expected given a

negative exponential distribution when the gamma-gamma distribution is used. This

matches the behavior of the scintillation index with increasing ℛ as indicated in

Fig. 2.

150



100 101 102

0.13

0.14

0.15

0.16

0.17

2w0/(θ0L)

σ
2 ε

point source
extended source

Figure 31. Effect of an incoherent extended beacon on SRI performance. Performance
given a point source beacon is provided for comparison. The vertical line indicates the
point where the nature of the source begins to impact SRI performance as predicted
by Sec. 4.5

Figure 30 also demonstrates how there is little difference in SRI performance

between 𝑑/𝑟0 = 1/4 and 𝑑/𝑟0 = 1/8, but a large difference for 𝑑/𝑟0 = 1/2. This is as

expected since, as seen in Eq. (6.3.17), 𝒟𝜙 and 𝒟𝑡 have little impact on 𝜎2𝜀 so long

as they are much less than one, but they can have a large impact once they become

greater than one. This is especially true for 𝒟𝜙 since its effect is further squared due
to the two spatial degrees of freedom.

Overall, the parameter that has the biggest impact on 𝜎2𝜀 is ⟨𝐾⟩. This indicates
that SRI performance should be good so long as the total available photo-counts are

sufficiently high. However, increasing the total photo-counts often involves increasing

the subaperture size or detector integration time. Since these actions also increase

𝒟𝜙 and 𝒟𝑡 which in turn decrease SRI performance, these effects need to be balanced
against each other to find the optimal operating conditions for a given situation.

The effect of an incoherent Gaussian Schell-model (GSM) source beacon on SRI

performance is demonstrated in Fig. 31, where the beacon diameter 2𝑤0 is given

in terms of the isoplanatic angle 𝜃0 defined by Eq. (2.4.46). It assumes constant

turbulence along the path, a point source 𝑑/𝑟0 = 1/5, ℛ = 1, ⟨𝐾⟩ = 100, and
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𝒟𝑡(𝜏𝑑)≪ 1. Complete spatial incoherence of the source requires its spatial coherence

radius 𝑙𝑐 to be on order of the wavelength 𝜆, such as when a long-coherence-length

laser is reflected off a rough metallic surface. Further assuming the source is initially

collimated, the atmospheric turbulence propagation parameters of Eq. (4.2.8) are

found to be Θ0 = 1, 𝑞𝑐 ∼ 1010, 𝑞 = 19.2, and Λ0 ranges from 10−2 to 103. The

quantity 𝑑/𝜌0, where 𝜌0 is the coherence radius of the light at the receiver found using

Eq. (4.2.31), ranges from 0.42 to 0.96. Assuming a phase structure function of𝒟𝜙(𝑑) =
2(𝑑/𝜌0)

5/3, this range satisfies the constraint of Eq. (6.3.16). The mean coupling

efficiency ⟨𝜂𝑖⟩ was found in the same manner as for Fig. 30, and was also assumed to be
negative exponentially distributed. As indicated in Fig. 30, the negative exponential

distribution and gamma-gamma distribution for 𝐼𝑖 very nearly give the same result

when ℛ = 1 and ⟨𝐾⟩ = 100. Consequently, the negative exponential distribution was

used here. The result for a point source beacon is included as a comparison.

Figure 31 demonstrates that as long as the GSM beacon is sufficiently small, the

phase error variance for a given subaperture is nearly unchanged from that when

using a point source. In this case, the beacon size could be nearly as large as 10𝜃0

before the beacon’s size begins to impact 𝜎2𝜀 primarily due to the increasing value of

𝒟𝜙. However, there is no way of telling just from this result the degree to which the

subaperture measurement is influenced by the atmospheric turbulence as opposed to

the incoherence of the source.

While it may not be possible to completely separate out the two effects, as long

as the source beacon affects all the subapertures across the detector in a reasonably

coherent manner, then it may be assumed that the higher-order SRI measurements

are caused primarily by the atmospheric turbulence. The conditions under which this

criterion is met were discussed in Sec. 4.5 and used to derive the constraints given by

Eqs. (4.5.3) and (4.5.4). Since 𝑞𝑐 is so large in this case, Eq. (4.5.3) is never satisfied,
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but the point where Eq. (4.5.4) is an equality with 𝐷 = 20
√
2𝑑 is indicated in Fig. 31

by the vertical line.

Since 𝜃0 is often used to define the angular extent over which atmospheric distor-

tions are correlated, also known as isoplanatism, it may be surprising to see this line

is located at 8.5𝜃0. However, this serves to illustrate the fact that the true isoplanatic

region for an optical system also depends on the receiver aperture size [18]. Using

a different value for 𝐷 changes the location of the vertical line. For instance, with

𝐷 = 10
√
2𝑑 the line would be at 17𝜃0, while with 𝐷 = 30

√
2𝑑 the line would be at

5.7𝜃0. As a result, an SRI can be effectively used in an AO system with extended

beacons, even when the source beacon may be considered to be anisoplanatic [11].

6.6 Conclusion

This chapter developed analytic noise models for an SRI using spatial four-bin PSI

that for the first time takes into account all the potential noise sources. These SRI

noise models are useful for analyzing the performance of an SRI as used in a given

application, or they can be used as the basis for trade studies when designing an SRI

based optical system. These models consist of expressions for the phase error variance

in the cases of small variations of all the random parameters, when either the incident

field intensity or fiber optic coupling efficiency has significant probability near zero,

and when both have significant probability near zero. These expressions were then

compared to Monte Carlo simulation runs that conformed to the assumptions inherent

in the analysis. The models and simulation runs demonstrated excellent agreement

with each other, particularly when there was either very many or very little average

photo-counts available for the PSI. The agreement in these limits always fell within

5%, and in some cases less than 1%. As would be expected, they perform the worst

in the transition region between many total photo-counts and few total photo-counts.
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Examples were provided where the noise model was used to estimate SRI perfor-

mance under a variety conditions. These examples demonstrated the effect of different

turbulence strengths, field spatial coherence size with respect to subaperture size, dif-

ferences in intensity distributions, various total photo-count levels, as well as extended

GSM beacons on SRI performance. This demonstrated how the noise model would

be useful when designing an SRI system for a particular application as the design

parameters are traded against each other. Furthermore, an example validated the

constraints derived in Chapter IV that describe when the nature of the source beacon

impacts wavefront sensor performance.

This analysis assumes the incident intensity fluctuations and the magnitude of the

coupling coefficient change little over the spatial and temporal detector integrations,

so their average value over these spatial and temporal extents can be well approxi-

mated by their value at the center of these extents. It also assumes the spatial and

temporal phase gradient over these extents is well approximated as being constant.

In the small fluctuations regime, it further assumes that the fluctuations of 𝐼𝑖, 𝜂𝑖, 𝐼,

and ∇𝜙 are sufficiently small that the approximations of Eqs. (6.3.12) and (6.3.15)
produce little error. In the case of Eq. (6.3.15), this typically means 𝐷𝜙 ≤ 𝜋2/4,

where 𝐷𝜙 is either the spatial or temporal phase structure function. These assump-

tions should be reasonable so long as the detector subaperture size and integration

time are small with respect to the coherence size and time of the incident light. Test-

ing the validity and/or applicability of these assumptions can be accomplished with

additional wave optics simulation runs. The models can then be adjusted as needed

to increase their accuracy based on the results of these simulations.
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VII. Conclusion

This research made great progress toward answering the question of how a self-

referencing interferometer (SRI) performs when used with extended beacons in strong

turbulence. It accomplished this task by analyzing the individual components of the

overall problem. The extended beacon was first assumed to be reasonably approxi-

mated by a Gaussian Shell-model (GSM) source. In Chapter IV, this assumption was

used to determine accurate expressions for the second-order statistical properties of

a beam emanating from this source after traversing through atmospheric turbulence

of arbitrary strength. These expressions were then used to form constraints on when

the coherence properties of the beam source would have little effect on SRI phase

measurements. Furthermore, this study demonstrated that the resulting beam can

still be well represented as a GSM beam.

This fact was used in Chapter V to analyze the effect of coupling this beam into a

single-mode optical fiber. Analytic expressions for the mean coupling efficiency and

its normalized variance were expressed in terms of the incident field characteristic

parameters, and by extension the original source and atmospheric parameters. This

study also took into account some fourth-order characteristics of the field such as its

speckle, or scintillation, content.

These coupling efficiency expressions were needed for the SRI noise model derived

in Chapter VI. This model depends primarily on the nature of the incident intensity

fluctuations, the coupling efficiency fluctuations, the coherence size of the incident

field with respect to the subaperture size, and the coherence time of the incident field

with respect to SRI integration time. While the actual form of the model depends

in large part on the stochastic nature of its component variables, several examples

were given when they display both large and small fluctuations. Using these ana-

lytic tools, it is now possible to predict the performance of an SRI given a partially
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coherent source beacon and intervening atmospheric turbulence strength, subject to

appropriate assumptions and constraints.

7.1 Original Contributions

As outlined in Chapter I, this research effort produced several original contribu-

tions, many of which apply to fields beyond AO or SRI performance, such as free-

space optical communications, stellar interferometry, and ladar/lidar systems. These

original contributions include

1. A generally more accurate method of estimating the coherence radius of partially

coherent Gaussian beams at all levels of turbulence,

2. A better understanding of the shape of the coherence function of partially co-

herent Gaussian beams at all levels of turbulence,

3. Constraints on the degree of coherence of a GSM source that would allow for

the use of an SRI to predominately measure atmospherically induced phase

perturbations,

4. Analytic expressions for the mean coupling efficiency of GSM beams into single-

mode optical fibers,

5. Analytic expressions for the coupling variance of GSM beams into single-mode

optical fibers,

6. A better understanding of the effect of speckle on the coupling of GSM beams

into single mode optical fibers,

7. A more accurate noise model for an SRI,

8. A better understanding of the effect of extended beacons and strong turbulence

on the performance of an SRI.
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These results, particularly the first two, can also be used to analyze the performance

of alternative wavefront sensors when used with extended beacons and strong turbu-

lence. The ultimate product of this research, the SRI noise model, should also be

useful aid when designing an SRI for a particular application.

7.2 Future Work

While this research has made great strides in better understanding how extended

beacons and strong turbulence affect the performance of an SRI, there is still much

work that may yet be done. One area of potential research deals with changing

the assumptions that were used throughout this study. These assumptions include

modeling the extended beacon as a GSM source, using atmospheric turbulence with

zero inner scale, and keeping the turbulence constant across the entire propagation

path. Changing these assumptions could make the final results more general, and

therefore more useful for a wider range of conditions. The assumptions used to derive

the SRI noise model could also be further tested by using wave optics simulations

along with an end-to-end SRI simulation. This would test the applicability of the

assumptions that the intensity of the incident field and its phase gradient change

little over the subaperture size and integration time. These simulations can also be

used to characterize the performance of the SRI when the spatial and/or temporal

coherence extent of the incident field is no longer large with respect to the subaperture

size and integration time. Since the above analysis also generally assumed open-loop

operation of the SRI, more can be done studying its performance when it is used in

closed-loop as part of entire AO system. Ultimately, the true test of any model is how

useful it is in practice, which can only be validated thorough laboratory experiment.

Another area of potential research deals with coming to a better understanding

of some of the parameters that constitute the model. This includes the probability

157



distributions of the intensity and phase gradient of light from a partially coherent

source after traveling through weak or strong turbulence. While this has been exten-

sively studied when the source is either completely coherent or incoherent, there is

still more that can be done if the source is partially coherent. More work could also

be done to better understand the spatial and temporal phase structure functions of

this light. Additionally, the probability distribution of the single-mode fiber coupling

efficiency both in open- and closed-loop operation could be further analyzed.

This analysis can also be applied to other wavefront sensors to model their per-

formance with extended beacons and strong turbulence. These models could then

be used to design hybrid wavefront sensors where complementary sensors may per-

form better than either in isolation as was demonstrated by Ellis [25]. These tools

and models are sure to serve as a useful aids for overcoming many of the challenges

that exist when attempting to compensate for strong atmospheric turbulence with

extended beacons.
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Appendix A: Fiber Coupling Integrals

This appendix derives the solutions to the integrals found in the analysis of

Chap. V. The following four integrals are used to define the general expressions

for the coupling efficiency mean and variance as presented in that chapter:

Int1 =

∫∫
𝒫

∫∫
𝒫

Γ(𝝆1,𝝆2)ℳ∗
0(𝝆1)ℳ0(𝝆2)𝑃 (𝝆1)𝑃 (𝝆2) d

2𝝆1 d
2𝝆2, (A.1)

Int2 =

∫∫
𝒫

Γ(𝝆,𝝆)𝑃 (𝝆) d2𝝆, (A.2)

Int3 =

∫∫
𝒫

∫∫
𝒫

∣Γ(𝝆1,𝝆2)∣2 𝑃 (𝝆1)𝑃 (𝝆2) d2𝝆1 d2𝝆2, (A.3)

Int4 =

∫∫
𝒫

∫∫
𝒫

∫∫
𝒫

∫∫
𝒫

Γ′(𝝆1,𝝆2,𝝆3,𝝆4)ℳ∗
0(𝝆1)ℳ0(𝝆2)ℳ∗

0(𝝆3)ℳ0(𝝆4)

× 𝑃 (𝝆1)𝑃 (𝝆2)𝑃 (𝝆3)𝑃 (𝝆4) d2𝝆1 d2𝝆2 d2𝝆3 d2𝝆4. (A.4)

To analytically evaluate these integrals, the MCF for GSM beams given by Eq. (5.2.10),

the Gaussian approximation to the back-propagated LP01 fiber mode given by Eq. (5.2.6),

and Γ′(𝝆1,𝝆2,𝝆3,𝝆4) as given by Eq. (5.3.3) are used. When the circular “hard” pupil

function of Eq. (5.2.12) is used, these integrals can be expressed in polar coordinates

as

Int1 =
8𝐴2

𝜋𝐷2

∫ 𝐷/2

0

∫ 2𝜋

0

∫ 𝐷/2

0

∫ 2𝜋

0

exp

[
−4𝐵
𝐷2

𝜌21 −
4𝐵∗

𝐷2
𝜌22 +

2𝜌1𝜌2
𝜌2𝑔

cos(𝜃1 − 𝜃2)
]

× 𝜌1𝜌2 d𝜃1 d𝜌1 d𝜃2 d𝜌2, (A.5)

Int2 =

∫ 𝐷/2

0

∫ 2𝜋

0

exp

(
−2𝜌

2

𝑤2𝑔

)
𝜌 d𝜃 d𝜌, (A.6)

Int3 =

∫ 𝐷/2

0

∫ 2𝜋

0

∫ 𝐷/2

0

∫ 2𝜋

0

exp

[
−2
(
1

𝑤2𝑔
+
1

𝜌2𝑔

)
(𝜌21 + 𝜌22) +

4𝜌1𝜌2
𝜌2𝑔

cos(𝜃1 − 𝜃2)
]

× 𝜌1𝜌2 d𝜃1 d𝜌1 d𝜃2 d𝜌2, (A.7)
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Int4 =
64𝐴4

𝜋2𝐷4

∫ 𝐷/2

0

∫ 2𝜋

0

∫ 𝐷/2

0

∫ 2𝜋

0

∫ 𝐷/2

0

∫ 2𝜋

0

∫ 𝐷/2

0

∫ 2𝜋

0

exp

{
−4𝐵
𝐷2

(𝜌21 + 𝜌23)

− 4𝐵
∗

𝐷2
(𝜌22 + 𝜌24) +

2

𝜌2𝑔

[
𝜌1𝜌2 cos(𝜃1 − 𝜃2)− 𝜌1𝜌3 cos(𝜃1 − 𝜃3) + 𝜌1𝜌4 cos(𝜃1 − 𝜃4)

+ 𝜌2𝜌3 cos(𝜃2 − 𝜃3)− 𝜌2𝜌4 cos(𝜃2 − 𝜃4) + 𝜌3𝜌4 cos(𝜃3 − 𝜃4)
]}

𝜌1𝜌2𝜌3𝜌4

× d𝜃1 d𝜌1 d𝜃2 d𝜌2 d𝜃3 d𝜌3 d𝜃4 d𝜌4, (A.8)

where

𝐵 =

(
𝐷

2𝑤𝑔

)2
+

(
𝐷

2𝜌𝑔

)2
+ 𝐴2 +

j𝑘𝐷2

8𝑅𝑔
. (A.9)

Equation (A.6) can be solved by standard techniques and expressed as

Int2 =
𝜋𝑤2𝑔
2

{
1− exp

[
−2
(

𝐷

2𝑤𝑔

)2]}
. (A.10)

Performing the 𝜃1 and 𝜃2 integrations in Eqs. (A.5) and (A.7), and making the sub-

stitutions 𝑥1 = 2𝜌1/𝐷 and 𝑥2 = 2𝜌2/𝐷, leads to

Int1 =2𝜋𝐴
2𝐷2

∫ 1

0

∫ 1

0

exp
(−𝐵𝑥21 − 𝐵∗𝑥22

)
𝐼0

[
2

(
𝐷

2𝜌𝑔

)2
𝑥1𝑥2

]
𝑥1𝑥2 d𝑥1 d𝑥2

=2𝜋𝐴2𝐷2𝑄

[
1, 2

(
𝐷

2𝜌𝑔

)2
,
√
𝐵,
√
𝐵∗

]

=
𝜋𝐴2𝐷2

2

∞∑
𝑖=0

∣∣∣∣∣ 1

(𝑖+ 1)!

(
𝐷

2𝜌𝑔

)2𝑖

×1𝐹1
[
𝑖+ 1; 𝑖+ 2;−

(
𝐷

2𝑤𝑔

)2
−
(

𝐷

2𝜌𝑔

)2
−𝐴2 − j𝑘𝐷

2

8𝑅𝑔

]∣∣∣∣∣
2

(A.11)
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Int3 =
𝜋2𝐷4

4

∫ 1

0

∫ 1

0

exp

{
−2
[(

𝐷

2𝑤𝑔

)2
+

(
𝐷

2𝜌𝑔

)2] (
𝑥21 + 𝑥22

)}
𝐼0

[
4

(
𝐷

2𝜌𝑔

)2
𝑥1𝑥2

]

× 𝑥1𝑥2 d𝑥1 d𝑥2

=
𝜋2𝐷4

4
𝑄

[
2

(
𝐷

2𝑤𝑔

)2
+ 2

(
𝐷

2𝜌𝑔

)2
, 4

(
𝐷

2𝜌𝑔

)2
, 1, 1

]

=
𝜋2𝐷4

16

∞∑
𝑖=0

{
2𝑖

(𝑖+ 1)!

(
𝐷

2𝜌𝑔

)2𝑖
1𝐹1

[
𝑖+ 1; 𝑖+ 2;−2

(
𝐷

2𝑤𝑔

)2
− 2
(

𝐷

2𝜌𝑔

)2]}2
,

(A.12)

where 𝐼0(⋅) is a modified Bessel function of imaginary argument, 𝑄(⋅) is defined and
solved in [17], and 1𝐹1(⋅) is the confluent hypergeometric function. However, Eq. (A.8)
is not amenable to analytic evaluation.

When the Gaussian “soft” pupil function of Eq. (5.2.14) is used, Eqs. (A.1)–(A.4)

can be expressed as

Int1 =
𝐴2𝐷2

2𝜋

∫ ∞

0

∫ 2𝜋

0

∫ ∞

0

∫ 2𝜋

0

exp

[
−𝐶𝜌21 − 𝐶∗𝜌22 +

2𝜌1𝜌2
𝜌2𝑔

cos(𝜃1 − 𝜃2)
]
𝜌1𝜌2

× d𝜃1 d𝜌1 d𝜃2 d𝜌2, (A.13)

Int2 =

∫ ∞

0

∫ 2𝜋

0

exp

[
−2
(
1

𝑤2𝑔
+

4

𝐷2

)
𝜌2
]
𝜌 d𝜃 d𝜌, (A.14)

Int3 =

∫ ∞

0

∫ 2𝜋

0

∫ ∞

0

∫ 2𝜋

0

exp

[
−2
(
1

𝑤2𝑔
+
1

𝜌2𝑔
+

4

𝐷2

)
(𝜌21 + 𝜌22) +

4𝜌1𝜌2
𝜌2𝑔

cos(𝜃1 − 𝜃2)

]

× 𝜌1𝜌2 d𝜃1 d𝜌1 d𝜃2 d𝜌2, (A.15)

Int4 =
64𝐴4

𝜋2𝐷4

∫ ∞

0

∫ 2𝜋

0

∫ ∞

0

∫ 2𝜋

0

∫ ∞

0

∫ 2𝜋

0

∫ ∞

0

∫ 2𝜋

0

exp

{
− 𝐶(𝜌21 + 𝜌23)− 𝐶∗(𝜌22 + 𝜌24)

+
2

𝜌2𝑔

[
𝜌1𝜌2 cos(𝜃1 − 𝜃2)− 𝜌1𝜌3 cos(𝜃1 − 𝜃3) + 𝜌1𝜌4 cos(𝜃1 − 𝜃4)

+ 𝜌2𝜌3 cos(𝜃2 − 𝜃3)− 𝜌2𝜌4 cos(𝜃2 − 𝜃4) + 𝜌3𝜌4 cos(𝜃3 − 𝜃4)
]}

𝜌1𝜌2𝜌3𝜌4

× d𝜃1 d𝜌1 d𝜃2 d𝜌2 d𝜃3 d𝜌3 d𝜃4 d𝜌4, (A.16)
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where

𝐶 =
1

𝑤2𝑔
+
1

𝜌2𝑔
+
(
𝐴2 + 2

) 4

𝐷2
+

j𝑘

2𝑅𝑔
. (A.17)

These integrals can be evaluated with use of the trigonometric identity

cos(𝑥± 𝑦) = cos 𝑥 cos 𝑦 ∓ sin 𝑥 sin 𝑦,

and the definite integral

∫ ∞

0

∫ 2𝜋

0

𝑥 exp
[−𝛼𝑥2 + 𝑥(𝛽 cos𝜙+ 𝛾 sin𝜙)

]
d𝜙 d𝑥 =

𝜋

𝛼
exp

(
𝛽2 + 𝛾2

4𝛼

)
, (A.18)

where Re𝛼 > 0, which is derived from Eqs. (3.338 4) and (6.633 4) of [42]. After

some algebraic manipulation, the final results can be expressed as

Int1 =

2𝜋𝐴2
(
𝐷

2

)2
∣∣∣∣∣
(

𝐷

2𝑤𝑔

)2
+

(
𝐷

2𝜌𝑔

)2
+ 𝐴2 + 2 +

j𝑘𝐷2

8𝑅𝑔

∣∣∣∣∣
2

−
(

𝐷

2𝜌𝑔

)4 , (A.19)

Int2 =

𝜋

2

(
𝐷

2

)2
(

𝐷

2𝑤𝑔

)2
+ 1

, (A.20)

Int3 =

(𝜋
2

)2(𝐷
2

)4
[(

𝐷

2𝑤𝑔

)2
+

(
𝐷

2𝜌𝑔

)2
+ 1

]2
−
(

𝐷

2𝜌𝑔

)4 , (A.21)
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and

Int4 =4𝜋
2𝐴4
(
𝐷

2

)4/⎛⎝
⎧⎨
⎩
∣∣∣∣∣
(

𝐷

2𝑤𝑔

)2
+

(
𝐷

2𝜌𝑔

)2
+ 𝐴2 + 2 +

j𝑘𝐷2

8𝑅𝑔

∣∣∣∣∣
2

−2
(

𝐷

2𝜌𝑔

)2 [(
𝐷

2𝑤𝑔

)2
+

(
𝐷

2𝜌𝑔

)2
+ 𝐴2 + 2

]
+

(
𝐷

2𝜌𝑔

)4}

×
⎧⎨
⎩
∣∣∣∣∣
(

𝐷

2𝑤𝑔

)2
+

(
𝐷

2𝜌𝑔

)2
+ 𝐴2 + 2 +

j𝑘𝐷2

8𝑅𝑔

∣∣∣∣∣
2

+2

(
𝐷

2𝜌𝑔

)2 [(
𝐷

2𝑤𝑔

)2
+

(
𝐷

2𝜌𝑔

)2
+ 𝐴2 + 2

]
− 3
(
𝐷

2𝜌𝑔

)4})
. (A.22)
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Appendix B: 𝜎2
𝜀 For Various Probability Distributions of 𝐼𝑖

and 𝜂𝑖

This appendix derives SRI noise models for additional probability distribution

functions (pdf) of the incident field intensity fluctuations 𝐼𝑖 and effective fiber coupling

efficiency 𝜂𝑖. Expressions are only derived for the cases where either one parameter

or the other has significant probability near 0. For the instances when both have

significant probability near zero, these expressions can easily be converted to the

conditioned phase error variance that must be integrated over the appropriate pdf of

the other variable. This final integration would most likely require numerical methods

similar to what is giving in Eq. (6.3.30).

Gamma Distribution

The gamma distribution is given by

𝑝𝑋(𝑥) =
(𝛽𝑥)𝛼 exp (−𝛽𝑥)

Γ(𝛼)𝑥
, (B.1)

where Γ(⋅) is the gamma function, 𝛼 = 1/�̃�2𝑋 , 𝛽 = 1/(⟨𝑋⟩ �̃�2𝑋), and �̃�2𝑋 = 𝜎2𝑋/ ⟨𝑋⟩2.
Using Eq. (6.3.19) as the expression for the conditioned phase error variance, the

unconditioned phase error variance when 𝐼𝑖 is gamma distributed can be expressed

as

𝜎2𝜀 ≃

⎧⎨
⎩

𝜋2

3
if 𝑎𝐼 ≤ 𝑏𝐼 ,

𝜋2

3

{
1−
(
1− 𝑏𝐼

𝑎𝐼

)
Γ

[
1

�̃�2𝐼𝑖
,

𝑐𝐼
(𝑎𝐼 − 𝑏𝐼) ⟨𝐼𝑖⟩ �̃�2𝐼𝑖

]/
Γ

(
1

�̃�2𝐼𝑖

)

+
𝑐𝐼

𝑎𝐼 ⟨𝐼𝑖⟩ �̃�2𝐼𝑖
Γ

[
1

�̃�2𝐼𝑖
− 1, 𝑐𝐼

(𝑎𝐼 − 𝑏𝐼) ⟨𝐼𝑖⟩ �̃�2𝐼𝑖

]/
Γ

(
1

�̃�2𝐼𝑖

)}
otherwise,

(B.2)
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where 𝑎𝐼 , 𝑏𝐼 , and 𝑐𝐼 are given by Eqs. (6.3.20)–(6.3.22), and Γ(𝛼, 𝑥) is the incomplete

gamma function defined as

Γ(𝛼, 𝑥) =

∫ ∞

𝑥

𝑡𝛼−1e−𝑡 d𝑡. (B.3)

By making the appropriate changes, a similar expression can be found when 𝜂𝑖 is

gamma distributed. Equation (B.2) reduces to Eq. (6.3.23) when �̃�2𝐼𝑖 = 1 as the

gamma distribution reduces to the exponential distribution.

Gamma-Gamma Distribution

The gamma-gamma distribution defines the probability of a random variable that

is the product of two unit-mean gamma distributed random variables. Its pdf is given

by

𝑝𝑋(𝑥) =
2

Γ(𝛼)Γ(𝛽)𝑥

(
𝛼𝛽𝑥

⟨𝑋⟩
)(𝛼+𝛽)/2

𝐾𝛼−𝛽

(
2

√
𝛼𝛽𝑥

⟨𝑋⟩

)
, (B.4)

where 𝐾𝜈(⋅) is a modified Bessel function of the second kind of order 𝜈, and the

normalized variance is given by

�̃�2𝑋 =
1 + 𝛼 + 𝛽

𝛼𝛽
. (B.5)

Since the mean is given as one of the input parameters to the pdf, the values of 𝛼

and 𝛽 are not set by a given mean and variance and must be derived by other means.

The gamma-gamma distribution has been used to model the intensity fluctuations

of light that has traveled though strong atmospheric turbulence [2]. Assuming 𝐼𝑖 is

gamma-gamma distributed with 𝛼 and 𝛽 as determined by [2, Chap. 9], integrating
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Eq. (6.3.19) over Eq. (B.4) produces

𝜎2𝜀 ≃

⎧⎨
⎩

𝜋2

3
if 𝑎𝐼 ≤ 𝑏𝐼 ,

𝜋2

3

[
𝑏𝐼
𝑎𝐼
+

𝑐𝐼𝛼𝛽

𝑎𝐼 ⟨𝐼𝑖⟩ (𝛼− 1)(𝛽 − 1) +
(
1− 𝑏𝐼

𝑎𝐼

)
1

Γ(𝛼)Γ(𝛽)

×
([

𝑐𝐼𝛼𝛽

(𝑎𝐼 − 𝑏𝐼) ⟨𝐼𝑖⟩
]𝛼
Γ(𝛽 − 𝛼)

𝛼− 1
{(

1− 1

𝛼

)
1𝐹2

[
𝛼; 1 + 𝛼, 1 + 𝛼− 𝛽;

𝑐𝐼𝛼𝛽

(𝑎𝐼 − 𝑏𝐼) ⟨𝐼𝑖⟩
]
− 1𝐹2

[
𝛼− 1;𝛼, 1 + 𝛼− 𝛽;

𝑐𝐼𝛼𝛽

(𝑎𝐼 − 𝑏𝐼) ⟨𝐼𝑖⟩
]}

+

[
𝑐𝐼𝛼𝛽

(𝑎𝐼 − 𝑏𝐼) ⟨𝐼𝑖⟩
]𝛽
Γ(𝛼− 𝛽)
𝛽 − 1

{(
1− 1

𝛽

)
1𝐹2

[
𝛽; 1 + 𝛽, 1 + 𝛽 − 𝛼;

𝑐𝐼𝛼𝛽

(𝑎𝐼 − 𝑏𝐼) ⟨𝐼𝑖⟩
]
− 1𝐹2

[
𝛽 − 1; 𝛽, 1 + 𝛽 − 𝛼;

𝑐𝐼𝛼𝛽

(𝑎𝐼 − 𝑏𝐼) ⟨𝐼𝑖⟩
]})]

otherwise,

(B.6)

where 1𝐹2(⋅) is a generalized hypergeometric function.

Uniform Distribution

The uniform distribution may be used as an approximate pdf for 𝜂 when ⟨𝜂⟩ is
close to 1/2. Since 𝜂 can only vary between 0 and 1, the uniform pdf is simply

𝑝𝑋(𝑥) =

⎧⎨
⎩
1 if 0 ≤ 𝑥 ≤ 1

0 otherwise

(B.7)

Assuming the small fluctuation approximation is valid for 𝐼𝑖, 𝐼, and ∇𝜙, the phase
error variance conditioned only on 𝜂 can be expressed as

𝜎2𝜀∣𝜂 ≃

⎧⎨
⎩
𝜋2

3
if 𝜂 ≤ 𝑏𝜂

𝑎𝜂 − 𝑐𝜂
or 𝑎𝜂 ≤ 𝑏𝜂 + 𝑐𝜂,

𝜋2

3

(
𝑏𝜂 + 𝑐𝜂𝜂

𝑎𝜂𝜂

)
otherwise,

(B.8)
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where

𝑎𝜂 =

{
1− [𝒟𝜙(𝑑)]

2.43

80

}2{
1− [𝒟𝑡(𝜏𝑑)]

2.43

80

}
2𝜋2

3
𝑑2𝜏𝑑𝛼𝛽(1− 𝛽) ⟨𝐼𝑖⟩

〈
𝐼
〉𝒜𝒫ℳ2

0(𝝆𝑖),

(B.9)

𝑏𝜂 =

[
1 +
𝒟𝜙(𝑑)
12

]2 [
1 +
𝒟𝑡(𝜏𝑑)
12

]
(1 + �̃�2𝐼 )

[
𝛽 ⟨𝐼𝑖⟩+

2𝜎2meas(1 + �̃�2𝐼𝑖)

𝛼𝑑2𝜏𝑑

]
, (B.10)

𝑐𝜂 =

[
1 +
𝒟𝜙(𝑑)
12

]2 [
1 +
𝒟𝑡(𝜏𝑑)
12

]
(1− 𝛽) 〈𝐼〉𝒜𝒫ℳ2

0(𝝆𝑖)(1 + �̃�2𝐼𝑖). (B.11)

Integrating Eq. (B.8) over Eq. (B.7) produces

𝜎2𝜀 ≃

⎧⎨
⎩
𝜋2

3
if 𝑎𝜂 ≤ 𝑏𝜂 + 𝑐𝜂,

𝜋2

3

[
𝑏𝜂 + 𝑐𝜂
𝑎𝜂
− 𝑏𝜂
𝑎𝜂
ln

(
𝑏𝜂

𝑎𝜂 − 𝑐𝜂

)]
otherwise.

(B.12)

Exponential Distribution

When ⟨𝜂⟩ ≪ 1, the distribution of 𝜂 may be approximated with Eq. (6.3.18).

Assuming the intensity fluctuation are small, integrating Eq. (B.8) over Eq. (6.3.18)

produces

𝜎2𝜀 =

⎧⎨
⎩

𝜋2

3
if 𝑎𝜂 ≤ 𝑏𝜂 + 𝑐𝜂,

𝜋2

3

{
1−
(
1− 𝑐𝜂

𝑎𝜂

)
exp

[
− 𝑏𝜂
(𝑎𝜂 − 𝑐𝜂) ⟨𝜂⟩

]

+
𝑏𝜂

𝑎𝜂 ⟨𝜂⟩𝐸1
[

𝑏𝜂
(𝑎𝜂 − 𝑐𝜂) ⟨𝜂⟩

]}
otherwise.

(B.13)
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Appendix C: MatlabⓇ Scripts

Listing C.1. AbsorptionBound.m

function absorb = AbsorptionBound(N, rho, a1, a2)

% absorb = AbsorptionBound(N, dx, r, a1, a2)

% Creates a Gaussian absorption boundary to be used with wave optics

% propagation with phase screens. It is designed to be the imaginary

% part of the phase screen:

% screen = phase − 1j*absorb;

% field t = field i .* exp(1j*screen);

%

% N: Size of the propagation grid

% rho: Radius of transmission area [pix]

% a1: Extinction coefficient in absorbtion area

% a2: Width of Gaussian transition area [pix]

%

% absorb: Absorption screen

%

% Created: 20 Apr 2010

% Modified: 21 Jul 2010

% By: Daniel J. Wheeler

x = −N/2:N/2−1;

y = x';

r = sqrt(x(ones(N,1),:).ˆ2 + y(:,ones(1,N)).ˆ2);

absorb = −a1*exp(−1/2*((r−rho)/a2).ˆ2);

absorb(r>rho) = −a1;

Listing C.2. AngSpecProp.m

function field out = AngSpecProp(field in, lambda, d1, d2, L)

% field out = AngSpecProp(field in, lambda, dx, L)

% Performs angular spectrum propagation between planes with scaling

%

% field in: Input complex field (must be NxN with even N)

% lambda: Field wavelength

% d1: Field sample spacing in source plane [m]

% d2: Field sample spacing in observation plane [m]
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% L: Propagation distance [m]

%

% field out: Output complex field

%

% Created: 17 Apr 2010

% Modified: 27 Apr 2010

% By: Daniel J. Wheeler

N = length(field in);

df = 1/(N*d1);

x = (−N/2:N/2−1)*d1;

y = x';

x1 = x(ones(N,1),:);

y1 = y(:,ones(1,N));

if d1 == d2

field out = ift2(ft2(field in, d1) .* ...

exp(−1j*pi*lambda*L*((x1*df/d1).ˆ2 + (y1*df/d1).ˆ2)), df);

else

k = 2*pi/lambda;

m = d2/d1;

field out = ift2(ft2(field in .* ...

exp(1j*k/2*(1−m)/L*(x1.ˆ2 + y1.ˆ2)), d1) .* ...

exp(−1j*pi*lambda*L/m*((x1*df/d1).ˆ2 + (y1*df/d1).ˆ2)), df) .* ...

exp(1j*k/2*(m−1)/m/L*((x1*m).ˆ2 + (y1*m).ˆ2))/m;

end

function G = ft2(g, X)

G = fftshift(fft2(fftshift(g))) * Xˆ2;

function g = ift2(G, df)

g = ifftshift(ifft2(ifftshift(G))) * (length(G) * df)ˆ2;

Listing C.3. AtmosModel.m

function turb = AtmosModel(lambda, Cn2, L, Nscrn, wind)

% turb = AtmosModel(lambda, Cn2, L, Nscrn, [v])

% Creates an atmospheric model for horizontal propagation.

%

% lambda: Wavelength of the field [m]
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% Cn2: Index of refraction structure constant [mˆ−2/3]

% L: Total propagation distance [m]

% Nscrn: Number of phase screens used to madel the turbulence

% wind: Wind velocity vector [m/s] (defaults to [0,0])

%

% turb: Structure that holds the parameters that define the atmosperic

% path

%

% Created: 19 Apr 2010

% Modified: 28 Apr 2010

% By: Daniel J. Wheeler

if nargin<5 ∣ ∣ isempty(wind), wind = [0 0]; end

k = 2*pi/lambda;

% Calculate statistical properties of turbulence path

r0pw = (0.423*kˆ2*Cn2*L)ˆ(−3/5); % Plane wave r0 [m]

r0sw = (0.159*kˆ2*Cn2*L)ˆ(−3/5); % Spherical wave r0 [m]

Rpw = 0.307*kˆ(7/6)*Cn2*Lˆ(11/6); % Plane wave Rytov number

Rsw = 0.124*kˆ(7/6)*Cn2*Lˆ(11/6); % Spherical wave Rytov number

% Calculate position and strength of phase screens

turb.loc = (2*(1:Nscrn)−1)/(2*Nscrn)*L; % Screen locations

A = [ones(1,Nscrn) % For r0,pw

(turb.loc/L).ˆ(5/3) % For r0,sw

(1−turb.loc/L).ˆ(5/6) % For Rpw

((turb.loc/L).*(1−turb.loc/L)).ˆ(5/6) % For Rsw

[diag(ones(Nscrn−1,1)) zeros(Nscrn−1,1)]+...

[zeros(Nscrn−1,1) −diag(ones(Nscrn−1,1))]]; % Equal phase screens

b = [r0pwˆ(−5/3)

r0swˆ(−5/3)

Rpw/1.33*(k/L)ˆ(5/6)

Rsw/1.33*(k/L)ˆ(5/6)

zeros(Nscrn−1,1)];

turb.r0i = (A∖b).ˆ(−3/5); % Calculates r0i values

turb.lam = lambda;

turb.L = L;

turb.wind = wind;
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Listing C.4. GSM MCF turb.m

function [Gam pp, Gam p] = GSM MCF turb(rho, w0, R0, lc, L, Cn2, lam, ...

tol, flag)

% [Gam pp, Gam p] = GSM MCF turb(rho,w0,R0,lc,L,Cn2,lam,[tol],[flag])

% Returns the MCF for a GSM beam having propagated through turbulence, by

% numerically evaluating the parabolic equation. It assumes horzontal

% propagation with a constant Cn2 value. The MCF at the source is:

% Gamma(rho1, rho2) = exp(−(rho1ˆ2 + rho2ˆ2)/w0ˆ2 − ∣rho1 − rho2∣ˆ2/lcˆ2

% − jk(rho1ˆ2 − rho2ˆ2)/(2R0))

% rho: Vector containing the locations where the MCF is evaluated

% w0: Beam radius at the source [m]

% R0: Radius of curvature at the source [m]

% R0 > 0: converging beam

% R0 < 0: diverging beam

% R0 = Inf: collimated beam

% lc: Coherence radius of beam at source [m]

% L: Propagation distance [m]

% Cn2: Index−of−refraction structure constant [mˆ−2/3]

% lam: Beam center wavelength [m]

% tol: Tolerance for the numerical integtations (defaults to 1e−6)

% flag: Whether or not to perform the numerical integration of

% Gamma(rho, 0, L) (defaults to true)

%

% Gam pp: Evaluation of Gamma(rho, rho, L)

% Gam p: Evaluation of Gamma(rho, 0, L)

% if flag == false && Cn2 == 0, Gam p = zeros(1,length(rho))

%

% Created: 24 Nov 2010

% Modified: 1 Dec 2010

% By: Daniel J. Wheeler

if nargin < 9 ∣ ∣ isempty(flag), flag = 1; end

if nargin < 8 ∣ ∣ isempty(tol), tol = 1e−6; end

k = 2*pi/lam;

Theta0 = 1 − L/R0;

Lam0 = 2*L/(k*w0ˆ2);

[˜, ˜, p0] = param2stats(Cn2, L, lam);

a = 1/2*(1/w0ˆ2 + 2/lcˆ2 + (k*w0/2/R0)ˆ2);

b = Lˆ2/2/kˆ2*(1/w0ˆ2 + 2/lcˆ2 + Theta0ˆ2/w0ˆ2/Lam0ˆ2);

c = L/k*(1/w0ˆ2 + 2/lcˆ2 − kˆ2*Theta0*w0ˆ2/4/R0/L);
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if p0 == Inf

Gam p = w0ˆ2/8/b*exp(−(a − (c + 1j/2)ˆ2/4/b)*rho.ˆ2);

Gam pp = w0ˆ2/8/b*exp(−rho.ˆ2/4/b);

return

end

turb = @(x, u, th, t) 8/3/p0ˆ(5/3)*(x.ˆ2 − 2*L*t/k.*x.*u.*cos(th) + ...

(L*t.*u/k).ˆ2).ˆ(5/6);

Int p = @(x, u, th) u.*exp(−a*x.ˆ2 − b*u.ˆ2 + (c + 1j/2)*x.*u.*cos(th) ...

− quadv(@(t) turb(x, u, th, t), 0, 1, tol));

Int pp = @(x, u) u.*exp(−b*u.ˆ2 − (L*u/p0/k).ˆ(5/3)) .* besselj(0, x.*u);

Gam p = zeros(1, length(rho));

Gam pp = Gam p;

for ind = 1:length(rho)

if logical(flag)

Gam p(ind) = quadgk(@(u) quadv(@(theta) Int p(rho(ind), u, ...

theta), −pi, pi, tol), 0, Inf);

end

Gam pp(ind) = quadgk(@(u) Int pp(rho(ind), u), 0, Inf);

end

Gam p = w0ˆ2/8/pi * exp(−0*rho.ˆ2) .* Gam p;

Gam pp = w0ˆ2/4 * Gam pp;

Listing C.5. GSMSource.m

function GSM = GSMSource(N, d1, w, sigc, lambda, bw, rate)

% GSM = GSMSource(N, d1, w, sigc, lammbda, bw, rate)

% Creates a Gaussian Schell−model source beacon. Uses the procedure by

% Gbur [Opt. Express, 14:7567−7578(2006)]. The field is normalized so

% that the average intensity at the center of the beam is 1.

%

% N: Number of samples across square propagation grid (must be even)

% d1: Sample spacing in the source plane [m]

% w: Gaussian beam radius (1/e point of field) [m]

% sigc: Spatial coherence radius of beam (1/sqrt(e) point) [m]

% lambda: Center wavelength of field

% bw: Bandwidth [fraction of center frequency]
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% rate: Pulse rate [pulses/cycle]

%

% GSM: Random GSM field

%

% Created: 14 Jul 2010

% By: Daniel J. Wheeler

% Modified: 7 Jan 2011

x = (−N/2 : N/2−1)*d1; % coodinate grid

[x y] = meshgrid(x);

r2 = x.ˆ2 + y.ˆ2;

c = 299792458; % speed of light in vac [m/sec]

nu = c/lambda; % mean optical frequencey [Hz]

Dnu = nu*bw; % optical bandwidth [Hz]

Npulse = 2*nu*rate/Dnu; % expected number of pulses in interval

% sqrt of intensity profile

Theta = exp(−r2/wˆ2)/sqrt(rate/bw*sqrt(log(2)/pi));

% temporal pulse shape

Phi = @(t) exp(−(pi*Dnu*t).ˆ2/(2*log(2))) .* exp(−1i*2*pi*nu*t);

n = poissrnd(Npulse); % random number of pulses

t = (2*rand(1,n)−1) /Dnu; % random departure time of pulses

Kx = randn(1,n) / sigc; % random draws of spatial frequencies

Ky = randn(1,n) / sigc;

GSM = zeros(N); % random optical field

% sum over plane wave pulses

for idx = 1 : n

GSM = GSM + Theta .* Phi(t(idx)) .* exp(−1i*(Kx(idx)*x+Ky(idx)*y));

end

Listing C.6. GSMSource temporal.m

function [GSM, Sout] = GSMSource temporal(N, d1, w, sigc, lambda, ...

bw, rate, Dt, S)

% [GSM,Sout] = GSMSource temporal(N,d1,w,sigc,lammbda,bw,rate,[Dt],[S])

% Creates a Gaussian Schell−model source beacon that can temporally

% evolve. Uses the procedure by Gbur [Opt. Express, 14:7567−7578(2006)].

% The field is normalized so that the average intensity at the center of
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% the beam is 1.

%

% N: Number of samples across square propagation grid

% d1: Sample spacing in the source plane [m]

% w: Beam radius (1/e point of average field amplitude) [m]

% sigc: Spatial coherence radius of beam (1/sqrt(e) point) [m]

% lambda: Center wavelength of field

% bw: FWHM bandwidth [fraction of center frequency]

% rate: Pulse rate [pulses/cycle]

% Dt: Time step since previous iteration [s] (defaults to 0)

% S: Structure containing the random values from the previous

% iteration

%

% GSM: Random GSM field

% Sout: Structure containing the random value from this iteration

%

% Created: 20 Apr 2011

% By: Daniel J. Wheeler

% Modified: 21 Apr 2011

if nargin < 9, S = []; end

if nargin < 8 ∣ ∣ isempty(Dt), Dt = 0; end

if mod(N, 2) == 0

x = (−N/2 : N/2−1)*d1; % coodinate grid

else

x = (−(N−1)/2 : (N−1)/2)*d1;

end

[x y] = meshgrid(x);

r2 = x.ˆ2 + y.ˆ2;

c = 299792458; % speed of light in vac [m/sec]

nu = c/lambda; % mean optical frequencey [Hz]

Dnu = nu*bw; % FWHM optical bandwidth [Hz]

% spatial amplitude profile

Theta = exp(−r2/wˆ2)/sqrt(rate/bw*sqrt(log(2)/pi));

% temporal pulse

Phi = @(t) exp(−(pi*Dnu*t).ˆ2/(2*log(2))) .* exp(−2j*pi*nu*t);

if isempty(S) ∣ ∣ abs(Dt) >= 2/Dnu

% fill entire interval with random pulses

n = poissrnd(2*nu*rate/Dnu); % random number of pulses
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t = (2*rand(1, n) − 1)/Dnu; % random departure time of pulses

Kx = randn(1, n)/sigc; % random draws of spatial frequencies

Ky = randn(1 ,n)/sigc;

elseif Dt > 0

t = S.t − Dt; % time shift the pulses

% delete pulses outside new interval

Kx = S.Kx(t >= −1/Dnu);

Ky = S.Ky(t >= −1/Dnu);

t(t < −1/Dnu) = [];

% generate new random pulses

n = poissrnd(Dt*nu*rate);

t = [t rand(1, n)*Dt + (1/Dnu − Dt)];

Kx = [Kx randn(1, n)/sigc];

Ky = [Ky randn(1, n)/sigc];

elseif Dt < 0

t = S.t − Dt; % time shift the pulses

% delete pulses outside new interval

Kx = S.Kx(t <= 1/Dnu);

Ky = S.Ky(t <= 1/Dnu);

t(t > 1/Dnu) = [];

% generate new random pulses

n = poissrnd(−Dt*nu*rate);

t = [t rand(1, n)*Dt − (1/Dnu + Dt)];

Kx = [Kx randn(1, n)/sigc];

Ky = [Ky randn(1, n)/sigc];

else

% use previous values

t = S.t;

Kx = S.Kx;

Ky = S.Ky;

end

GSM = zeros(N); % random optical field

% sum over random pulses

for idx = 1 : length(t)

GSM = GSM + Theta .* Phi(t(idx)) .* exp(−1j*(Kx(idx)*x + Ky(idx)*y));

end

Sout = struct('t', t, 'Kx', Kx, 'Ky', Ky);
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Listing C.7. Integrate38.m

function int = Integrate38(f, dx, dy, dz)

% int = Integrate38(f, dx, [dy], [dz])

% Performs up to 3−demensional integration based on regularly

% spaced samples using Simpson's 3/8 rule. If the number

% of samples across one dimension is not one more than a multiple of

% three, the final one or two sample intervals is integrated using

% either the trapizoid rule or Simpson's rule respectively.

%

% f: Samples of the function to be integtrated

% dx: Spacing between samples along the first index

% dy: Spacing between samples along the second index (defaults to dx)

% dz: Spacing between samples along the third index (defaults to dx

% in multi−demensional arrays)

%

% int: Integration result

%

% Created: 14 Jun 2010

% By: Daniel J. Wheeler

% Modified: 26 Apr 2011

if nargin < 4 && size(f, 3) > 1, dz = dx; end

if nargin < 3 ∣ ∣ isempty(dy), dy = dx; end

[m,n,s] = size(f);

if m == 1

Sm = 1; % no integration

elseif m == 2

Sm = dx/2*[1 1]; % Trapizoid rule

elseif m == 3

Sm = dx/3*[1 4 1]; % Simpson's rule

elseif mod(m, 3) == 1

Sm = 3*dx/8*[1 repmat([3 3 2], 1, (m−4)/3) 3 3 1]; % 3/8 rule

elseif mod(m, 3) == 2

Sm = 3*dx/8*[1 repmat([3 3 2], 1, (m−5)/3) 3 3 7/3 4/3];% w/ Trapizoid

else

Sm = 3*dx/8*[1 repmat([3 3 2], 1, (m−6)/3) 3 3 17/9 32/9 8/9];% w/ Simp

end

if n == 1

Sn = 1; % no integration

elseif n == 2
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Sn = dy/2*[1;1]; % Trapizoid rule

elseif n == 3

Sn = dy/3*[1;4;1]; % Simpson's rule

elseif mod(n, 3) == 1

Sn = 3*dy/8*[1;repmat([3;3;2], (n−4)/3, 1);3;3;1]; % 3/8 rule

elseif mod(n, 3) == 2

Sn = 3*dy/8*[1;repmat([3;3;2], (n−5)/3, 1);3;3;7/3;4/3];% w/ Trapizoid

else

Sn = 3*dy/8*[1;repmat([3;3;2], (n−6)/3, 1);3;3;17/9;32/9;8/9];% w/ Simp

end

if s == 1

Ss = 1; % no integration

elseif s == 2

Ss = dz/2*[1;1]; % Trapizoid rule

elseif s == 3

Ss = dz/3*[1;4;1]; % Simpson's rule

elseif mod(s, 3) == 1

Ss = 3*dz/8*[1;repmat([3;3;2], (s−4)/3, 1);3;3;1]; % 3/8 rule

elseif mod(s, 3) == 2

Ss = 3*dz/8*[1;repmat([3;3;2], (s−5)/3, 1);3;3;7/3;4/3];% w/ Trapizoid

else

Ss = 3*dz/8*[1;repmat([3;3;2], (s−6)/3, 1);3;3;17/9;32/9;8/9];% w/ Simp

end

int = zeros(1, s);

for ind = 1:s

int(ind) = Sm*f(:,:,ind)*Sn;

end

int = int*Ss;

Listing C.8. intvec.m

function I = intvec(fun,y,a,b)

% I = intvec(fun,a,b)

% Performs the integration of a function over a vector input. Uses

% quadgk as a basis.

%

% fun: Function handle with two inputs. The first is for the variable

% of integration, and the second is for a variable parameter.

% y: Input vector of the variable parameter
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% a: Starting point of integration

% b: Ending point of integration

%

% I: Integration results

%

% Created: 12 May 2011

% By: Daniel J. Wheeler

if length(a(:)) == 1, a = a*ones(size(y)); end

if length(b(:)) == 1, b = b*ones(size(y)); end

I = zeros(size(y));

for ind = 1:length(y(:))

I(ind) = quadgk(@(x)fun(x,y(ind)),a(ind),b(ind));

end

Listing C.9. PhaseScrnGen.m

function phz = PhaseScrnGen(N ,dx, wind, time, rndstr, PSD, l0, L0, lg, ...

sub)

% phz = PhaseScrnGen(N,dx,[wind],[time],[randstr],[PSD],[l0],[L0],[lg], ...

% [sub])

% Generates a NxN random phase screen based on a normalized coherence

% length and a given sample spacing and power spectral density model.

% Assumes frozen turbulence flow. To produce a phase screen with a given

% r0, multiply the resulting screen by r0ˆ−5/6.

%

% N: Propagation grid size (assumed to be even)

% dx: Grid sample spacing [m]

% wind: Wind velocity vector [m/s] (defaults to [0,0])

% time: Propagation time (defaults to 0) [s]

% rndstr: Random number stream used to generate phase screens

% (defaults to DefaultStream)

% PSD: PSD model used to calculate each phase screen. Can be any

% of the following:

% 'Kolmogorov': Kolmogorov power law (default)

% 'von Karman': Kolmogorov power law with inner and outer

% scale effects

% 'Atmospheric': Kolmogorov power law with inner, outer, and

% Hill bump effects

% 'Gaussian': Gaussian power law
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% 'Vacuum': No turbulence (default for any other entry)

% l0: Inner scale size (defaults to 0) [m]

% L0: Outer scale size (defaults to Inf) [m]

% lg: Coherence radius for Gaussian spectrum [m] (1 sigma)

% (defaults to 1)

% sub: Number of sub−harmonics to add to phase screen (defaults to 0)

%

% phz: Random phase screen

%

% Created: 19 Apr 2010

% Modified: 9 Aug 2010

% By: Daniel J. Wheeler

if nargin<10∣∣ isempty(sub), sub = 0; end

if nargin<9 ∣ ∣ isempty(lg), lg = 1; end

if nargin<8 ∣ ∣ isempty(L0), L0 = Inf; end

if nargin<7 ∣ ∣ isempty(l0), l0 = 0; end

if nargin<6 ∣ ∣ isempty(PSD), PSD = 'Kolmogorov'; end

if nargin<5 ∣ ∣ isempty(rndstr), rndstr = RandStream.getDefaultStream; end

if nargin<4 ∣ ∣ isempty(time), time = 0; end

if nargin<3 ∣ ∣ isempty(wind), wind = [0 0]; end

dkappa = 2*pi/(N*dx);

kx = (−N/2:N/2−1)*dkappa;

ky = kx';

kappa x = kx(ones(N,1),:);

kappa y = ky(:,ones(1,N));

kappa2 = kappa x.ˆ2 + kappa y.ˆ2;

switch lower(PSD)

case 'kolmogorov'

PSD phi = 0.49 * kappa2.ˆ(−11/6);

case 'von karman'

kappa 0 = 2*pi/L0;

kappa m = 5.92/l0;

PSD phi = 0.49 * exp(−kappa2/kappa mˆ2) ...

./ (kappa2 + kappa 0ˆ2).ˆ(11/6);

case 'atmospheric'

kappa 0 = 2*pi/L0;

kappa l = 3.3/l0;

PSD phi = 0.49 * exp(−kappa2/kappa lˆ2) ...

.* (1+1.802*(sqrt(kappa2)/kappa l)−0.254 ...
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*(sqrt(kappa2)/kappa l).ˆ(7/6)) ...

./ (kappa2 + kappa 0ˆ2).ˆ(11/6);

case 'gaussian'

xi = sqrt(100); % argument of sqrt must be >> 1

df = xi*lg/sqrt(2);

dr = 2*sqrt(pi)*xi*df;

PSD phi = drˆ2*exp(−kappa2*dfˆ2)/(2*pi)ˆ2;

otherwise

phz = zeros(N);

return

end

PSD phi(N/2+1,N/2+1) = 0; % Zero mean phase screen

c = (randn(rndstr,N) + 1j*randn(rndstr,N)) .* sqrt(PSD phi)*dkappa ...

.* exp(−1j*time*(wind(1)*kappa x + wind(2)*kappa y));

phz = real(ift2(c, 1));

% Add in sub−harmonics

x = kappa x*dx/dkappa;

y = kappa y*dx/dkappa;

for p = 1:sub

dk = 2*pi/(2ˆp*N*dx);

kx = (−1:1)*dk;

kx = kx(ones(3,1),:);

ky = kx';

k = sqrt(kx.ˆ2 + ky.ˆ2);

switch lower(PSD)

case 'kolmogorov'

PSD sh = 0.49 * k.ˆ(−11/3);

case 'von karman'

PSD sh = 0.49 * exp(−k.ˆ2/kappa mˆ2) ...

./ (k.ˆ2 + kappa 0ˆ2).ˆ(11/6);

case 'atmospheric'

PSD sh = 0.49 * exp(−k.ˆ2/kappa lˆ2) ...

.* (1 + 1.802*(k/kappa l) − 0.254*(k/kappa l).ˆ(7/6)) ...

./ (k.ˆ2 + kappa 0ˆ2).ˆ(11/6);

case 'gaussian'

PSD sh = drˆ2*exp(−(k*df).ˆ2)/(2*pi)ˆ2;

end

PSD sh(2,2) = 0;
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cn = (randn(rndstr,3) + 1j*randn(rndstr,3)) .* sqrt(PSD sh)*dk ...

.* exp(−1j*time*(wind(1)*kx + wind(2)*ky));

for ind = 1:9

phz = phz + real(cn(ind) * exp(1j*(kx(ind)*x + ky(ind)*y)));

end

end

phz = phz − mean(phz(:));

Listing C.10. PointSource.m

function point = PointSource(N, d1, dn, D, lambda, L, theta x, theta y)

% point = PointSource(N, d1, dn, D, lambda, L, [theta x], [theta y])

% Creates a point beacon based on the desired receiver plane parameters.

% Vacuum propagation results in a super−Gaussian irradiance pattern with

% parabolic plus linear phase.

%

% N: Number of samples across square propagation grid (must be even)

% d1: Sample spacing in the source plane [m]

% dn: Sample spacing in the observation plane [m]

% D: Diameter of illuminated region at receiver plane [m]

% lambda: Wavelength of field

% L: Distance between source and observation planes [m]

% theta x:Angular offset of point source in the x−direction [rad]

% (defaults to 0 rad)

% theta y:Angular offset of point source in the y−direction [rad]

% (defaults to 0 rad)

%

% point: Structure that holds the parameters that define the point

% source beacon

%

% Created: 17 Apr 10

% Modified: 28 Apr 10

% By: Daniel J. Wheeler

if nargin<8 ∣ ∣ isempty(theta y), theta y = 0; end

if nargin<7 ∣ ∣ isempty(theta x), theta x = 0; end

x = (−N/2:N/2−1)*dn;

y = x';

xn = x(ones(N,1),:);
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yn = y(:,ones(1,N));

r2 = xn.ˆ2 + yn.ˆ2;

field = exp(−(2/D)ˆ100*r2.ˆ50) ...

.* exp(2j*pi/lambda*(r2/2/L − xn*tan(theta x) − yn*tan(theta y)));

point.field = AngSpecProp(field, lambda, dn, d1, −L);

point.lam = lambda;

point.d1 = d1;

point.dn = dn;

point.L = L;

Listing C.11. PropHorizTurb.m

function receive = PropHorizTurb(source, turb, rho, a1, a2, time, ...

rndstr, PSD, l0, L0, sub)

% received = PropHorizTurb(source, turb, [rho], [a1], [a2], [time], ...

% [rndstr], [PSD], [l0], [L0], [sub])

% Models horizontal propagation of a complex field through constant

% turbulence based of the contents of source and turb. Assumes frozen

% turbulence flow.

%

% source: Structure defining the source field of the propagation.

% Must contain the following fields:

% field: NxN complex field

% d1: Sample spacing in source plane [m]

% dn: Sample spacing in observation plane [m]

% lam: Wavelength of the field [m]

% turb: Structure defining the constant turbulence model.

% Must contain the following fields:

% L: Total propagation distance [m]

% r0i: Column vector containing r0 for each phase screen

% [m]

% loc: Row vector containing locations for each phase

% screen [m]

% lam: Wavelength of the field [m]

% wind: Wind velocity vector [m/s]

% rho: Radius of transmission area [pix] (defaults to Inf)

% a1: Extinction coefficient in absorbtion area (defaults to 25)

% a2: Width of transition area [pix] (defaults to 1)

% time: Propagation time (defaults to 0) [s]

% rndstr: Random number stream used to generate phase screens
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% (defaults to DefaultStream)

% PSD: PSD model used to calculate each phase screen. Can be any

% of the following:

% 'Kolmogorov': Kolmogorov power law (default)

% 'von Karman': Kolmogorov power law with inner and outer

% scale effects

% 'Atmospheric': Kolmogorov power law with inner, outer, and

% Hill bump effects

% 'Vacuum': No turbulence (default for any other entry)

% l0: Inner scale size (defaults to 0) [m]

% L0: Outer scale size (defaults to Inf) [m]

%

% receive: Complex field after atmospheric propagation

%

% Created: 19 Apr 2010

% Modified: 28 Apr 2010

% By: Daniel J. Wheeler

if nargin<11 ∣ ∣ isempty(sub), sub = 0; end

if nargin<10 ∣ ∣ isempty(L0), L0 = Inf; end

if nargin<9 ∣ ∣ isempty(l0), l0 = 0; end

if nargin<8 ∣ ∣ isempty(PSD), PSD = 'Kolmogorov'; end

if nargin<7 ∣ ∣ isempty(rndstr), rndstr = RandStream.getDefaultStream; end

if nargin<6 ∣ ∣ isempty(time), time = 0; end

if nargin<5 ∣ ∣ isempty(a2), a2 = 1; end

if nargin<4 ∣ ∣ isempty(a1), a1 = 25; end

if nargin<3 ∣ ∣ isempty(rho), rho = Inf; end

N = length(source.field);

if rho == Inf

absorb = 0;

else

absorb = AbsorptionBound(N, rho, a1 ,a2);

end

place = 0; % Keeps track of location along propagation path

count = 1;

if turb.loc(1) == place % In case phase screen exists at source

phase = PhaseScrnGen(N, source.d1, turb.wind, time, ...

rndstr, PSD, l0, L0, sub);

field = source.field .* exp(absorb + 1j*phase*turb.r0i(1)ˆ(−5/6));

count = count+1;
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else

field = source.field;

end

d1 = source.d1;

for ind = count:length(turb.loc) % Propagate to each phase screen

d2 = (source.dn−source.d1)/turb.L*turb.loc(ind) + source.d1;

field = AngSpecProp(field, source.lam, d1, d2, turb.loc(ind)−place);

phase = PhaseScrnGen(N, d2, turb.wind, time, rndstr, PSD, l0, L0, sub);

field = field .* exp(absorb + 1j*phase*turb.r0i(ind)ˆ(−5/6));

place = turb.loc(ind);

d1 = d2;

end

if place < turb.L % Final propagation

receive = AngSpecProp(field, source.lam, d1, source.dn, turb.L−place);

else

receive = field;

end

Listing C.12. SMF coupling hard.m

function eta = SMF coupling hard(D, wg, pg, lam, Rg, A)

% eta = SMF coupling hard(D, wg, pg, [Rg], [A])

% Gives mean coupling efficiency for a Gaussian Schell−model beam into a

% single−mode optical fiber assuming an on−axis circular aperture. All

% inputs must be either scalers or the same size for non−scalers.

%

% D: Diameter of circular aperture [m]

% wg: Average Gaussian beam radius (1/e point of field) [m]

% pg: Spatial coherence radius of beam (1/e point) [m]

% lam: Center wavelength of field [m]

% Rg: Average beam radius of curvature (>0 diverging, <0 converging,

% Inf collimated [default]) [m]

% A: Coupling geometry (A = pi D Wm/(2 lam f)) (defaults to 1.121)

%

% eta: Coupling efficiency

%

% Created: 24 Jan 2011

% By: Daniel J. Wheeler

% Modified: 28 Jan 2011

184



if nargin < 6 ∣ ∣ isempty(A), A = 1.120906422778534; end

if nargin < 5 ∣ ∣ isempty(Rg), Rg = Inf; end

B = (D/2./wg).ˆ2 + (D/2./pg).ˆ2 + A.ˆ2 + 1j*pi*D.ˆ2/4./lam./Rg;

eta = zeros(size(pg));

if matlabpool('size') == 0

matlabpool open

parfor ind = 1:length(pg(:))

eta(ind) = summation(D, pg, B, ind);

end

matlabpool close

else

for ind = 1:length(pg(:))

eta(ind) = summation(D, pg, B, ind);

end

end

if length(wg) == 1 && ˜isinf(wg)

eta = 2*(D/2/wg).ˆ2 ./ (1 − exp(−2*(D/2/wg).ˆ2)) .* eta;

elseif length(wg) > 1

ind = ˜isinf(wg);

if length(D) == 1

eta(ind) = 2*(D/2./wg(ind)).ˆ2 ...

./ (1 − exp(−2*(D/2./wg(ind)).ˆ2)) .* eta(ind);

else

eta(ind) = 2*(D(ind)/2./wg(ind)).ˆ2 ...

./ (1 − exp(−2*(D(ind)/2./wg(ind)).ˆ2)) .* eta(ind);

end

end

eta = 2*A.ˆ2 .* eta;

function s = summation(D, pg, B, ind)

s = 0;

p = 0;

while 1

sp = abs(exp(p*log(D/2/pg(ind)) − gammaln(p+2)/2) ...

* sqrt(hypergeom(1+p, 2+p, −B(ind))))ˆ4;

if isinf(sp) ∣ ∣ isnan(sp) ∣ ∣ sp < eps(s), break, end

s = s + sp;

p = p+1;

end
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Listing C.13. SMF normvar full speckle.m

function normvar = SMF normvar full speckle(D, wg, pg)

% normvar = SMF normvar full speckle(D, wg, pg)

% Calculates normalized variance of a Gaussian Schell−model beam with

% fully developed speckle coupling into a single−mode optical fiber

% assuming an on−axis circular aperture.

% All inputs must be either scalers or the same size for non−scalers.

%

% D: Diameter of circular aperture [m]

% wg: Average Gaussian beam radius (1/e point of field) [m]

% pg: Spatial coherence radius of beam (1/e point) [m]

%

% normvar: Normalized variance of coupling efficiency

%

% Created: 27 Jan 2011

% By: Daniel J. Wheeler

% Modified: 28 Jan 2011

B = 2*(D/2./wg).ˆ2 + 2*(D/2./pg).ˆ2;

I2 = wg.ˆ2.*(1 − exp(−2*(D/2./wg).ˆ2));

if length(wg) == 1 && isinf(wg)

I2 = D.ˆ2/4;

elseif length(wg) > 1

if length(D) == 1

I2(isinf(wg)) = Dˆ2/2;

else

I2(isinf(wg)) = D(isinf(wg)).ˆ2/2;

end

end

I3 = zeros(size(pg));

if matlabpool('size') == 0

matlabpool open

parfor ind = 1:length(pg(:))

I3(ind) = summation(D, pg, B, ind);

end

matlabpool close

else

for ind = 1:length(pg(:))

I3(ind) = summation(D, pg, B, ind);

end

end
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I3 = D.ˆ4/4 .* I3;

normvar = (I2.ˆ2 − I3) ./ (I2.ˆ2 + I3);

function s = summation(D, pg, B, ind)

s = 0;

p = 0;

while 1

sp = (exp(p*log(D/sqrt(2)/pg(ind)) − gammaln(p+2)/2) ...

* sqrt(hypergeom(1+p, 2+p, −B(ind))))ˆ4;

if isinf(sp) ∣ ∣ isnan(sp) ∣ ∣ sp < eps(s), break, end

s = s + sp;

p = p+1;

end

Listing C.14. SRIsim.m

function [out, err, b0] = SRIsim(fields, nSubAp, dx, td, D, d, lam, a, ...

V, f, beta, etaq)

% [out,err,b0] = SRIsim(fields,nSubAp,dx,td,D,d,lam,a,V,f,beta,etaq)

% Simulates the performance of a self−referencing interferometer. Only

% includes the effects of shot noise.

%

% fields: 3−D array of fields that represent the spatial and temporal

% sampling of the incident field during the detector integration

% time. The first two demensions represent the spatial sampling,

% while the third repesents temporal sampling, assumed to be

% equally sampled across detector integration time. (Spatial

% dememsions assumed to be square.)

% nSubAp: The number of subapertures across the detector (assumed even)

% dx: Field spatial sampling size [m]

% td: Detector integration time [s]

% D: Receiver diameter (assumed circular) [m]

% d: Subaperture width (assumed square and multiple of dx) [m]

% lam: Center wavelength of field [m]

% a: Single−mode fiber core radius [m]

% V: Single−mode fiber normalized frequency

% f: Fiber coupling lens focal length (assumed to be equavalent on

% input and output of fiber)

% beta: Fractional input power allocated to the signal path

% etaq: Detector quantum efficiency

%
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% out: SRI phase measurements

% err: Phase measurement error

% b0: Coupling coefficient

%

% Created: 18 Apr 2011

% By: Daniel J. Wheeler

% Modified: 29 Apr 2011

[˜, N, Nt] = size(fields); % size of input field grid

Nd = round(nSubAp*d/dx)+1; % grid size of detector area

h = 6.62606896e−34; % Planck's constant [J s]

c = 299792458; % speed of light [m/s]

alpha = etaq/h/c*lam; % converts integrated intensity to average counts

if mod(N,2) == 0

[x, y] = meshgrid((−N/2 : N/2−1) * dx);

else

[x, y] = meshgrid((−(N−1)/2 : (N−1)/2) * dx);

end

r = sqrt(x.ˆ2 + y.ˆ2);

mask = (r <= D/2);

options = optimset('Display', 'off', 'TolFun', eps);

sol = fsolve(@(x)uwEval(x, V), [1 1], options);

u = sol(1); w = sol(2);

k = 2*pi/lam;

M0 = k*a*w*V/sqrt(pi)/f * (u*besselj(0, k*a*r/f) − k*a*r/f*besselj(0, u) ...

/ besselj(1, u).*besselj(1, k*a*r/f)) ./ (uˆ2 − (k*a*r/f).ˆ2) ...

./ (wˆ2 + (k*a*r./f).ˆ2); % reference field amplitude shape

M0ref = zeros(Nd);

M0ref(:) = M0(abs(x) <= nSubAp*d/2 & abs(y) <= nSubAp*d/2);

% pre−allocate memory

Uin = zeros(Nd);

I1 = zeros([size(Uin) Nt]);

I2 = I1;

I3 = I1;

I4 = I1;

phi = I1;

b0 = zeros(1,Nt);

for ind = 1:Nt % determine intensity profile at detector

U0 = fields(:,:,ind);

b0(ind) = Integrate38(U0 .* M0 .* mask, dx);

Uin(:) = U0(abs(x) <= nSubAp*d/2 & abs(y) <= nSubAp*d/2);
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I1(:,:,ind) = abs(sqrt(beta)*Uin + sqrt(1−beta)*b0(ind)*M0ref ...

*exp(−0j*pi/2)).ˆ2/4;

I2(:,:,ind) = abs(sqrt(beta)*Uin + sqrt(1−beta)*b0(ind)*M0ref ...

*exp(−1j*pi/2)).ˆ2/4;

I3(:,:,ind) = abs(sqrt(beta)*Uin + sqrt(1−beta)*b0(ind)*M0ref ...

*exp(−2j*pi/2)).ˆ2/4;

I4(:,:,ind) = abs(sqrt(beta)*Uin + sqrt(1−beta)*b0(ind)*M0ref ...

*exp(−3j*pi/2)).ˆ2/4;

phi(:,:,ind) = angle(Uin*exp(−1j*angle(b0(ind))));

end

% perform spatial and temporal integration and add shot noise

if Nt == 1

K1avg = alpha*SubApIntegrate(I1, nSubAp, dx, 1)*td;

K2avg = alpha*SubApIntegrate(I2, nSubAp, dx, 1)*td;

K3avg = alpha*SubApIntegrate(I3, nSubAp, dx, 1)*td;

K4avg = alpha*SubApIntegrate(I4, nSubAp, dx, 1)*td;

else

K1avg = alpha*SubApIntegrate(I1, nSubAp, dx, td/(Nt−1));

K2avg = alpha*SubApIntegrate(I2, nSubAp, dx, td/(Nt−1));

K3avg = alpha*SubApIntegrate(I3, nSubAp, dx, td/(Nt−1));

K4avg = alpha*SubApIntegrate(I4, nSubAp, dx, td/(Nt−1));

end

K1 = poissrnd(K1avg);

K2 = poissrnd(K2avg);

K3 = poissrnd(K3avg);

K4 = poissrnd(K4avg);

out = atan2(K4 − K2, K1 − K3);

err = out − atan2(K4avg − K2avg, K1avg − K3avg);

err(err > pi) = err(err > pi) − 2*pi;

err(err < −pi) = err(err < −pi) + 2*pi;

function F = uwEval(x, V)

% F = uwEval(x)

% This function is used to solve for the u and w of single−mode fibers

% using fsolve

%

% x: Vector for initial guesses of u (x(1)) and w (x(2))

% V: Normalized frequency of the single−mode fiber

%

% Created: 18 Apr 2011
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% By: Daniel J. Wheeler

F = [x(1)ˆ2 + x(2)ˆ2 − Vˆ2

x(1) * besselj(1, x(1)) * besselk(0, x(2)) ...

− x(2) * besselk(1, x(2)) * besselj(0, x(1))];

function M = SubApIntegrate(I, nSubAp, dx, dt)

% M = SubApIntegrate(I,nSubAp,dx)

% Uses Simpson's 3/8 rule to spatially and temporally integrate over each

% subaperture. Assumes the field covers the detector region of interest,

% and the third index represents the temporal demension.

%

% I: Intensity field to be integrated

% nSubAp: Number of subapertures across the detector

% dx: Spatial sample spacing

% dt: Temporal sample spacing

%

% Created: 18 Apr 2011

% By: Daniel J. Wheeler

% Modified: 26 Apr 2011

M = zeros(nSubAp);

n = (size(I, 1)−1)/nSubAp;

for ind = 1:nSubAp

for jnd = 1:nSubAp

M(ind, jnd) = Integrate38(I(n*(ind−1)+1 : n*ind+1, ...

n*(jnd−1)+1 : n*jnd+1, :), dx, dx, dt);

end

end

Listing C.15. param2stats.m

function [r0 R rho0] = param2stats(Cn2, L, lam)

% [r0 R rho0] = param2stats(Cn2, L, lam)

% Calculates the statistical field characteristics for light from a point

% source beacon propagating through constant atmospheric turbulence

%

% Cn2: Index−of−refraction structure function coefficient [mˆ−2/3]

% L: Propagation distance [m]

% lam: Wavelenth of the field [m]

%
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% r0: Atmospheric coherence length

% R: Rytov number

% rho0: Coherence radius

%

% By: Daniel J. Wheeler

k = 2*pi/lam;

r0 = (5ˆ(11/6)*pi*gamma(2/3)/(2ˆ(43/6)*3ˆ(4/3)*(gamma(11/6))ˆ2 ...

*(gamma(6/5))ˆ(5/6))*Cn2*kˆ2.*L).ˆ(−3/5);

R = 9*(3−sqrt(3))*sqrt(pi)*gamma(2/3)*gamma(7/6)*gamma(11/6) ...

/(64*2ˆ(1/6)*gamma(1/3))*Cn2*kˆ(7/6).*L.ˆ(11/6);

rho0 = (5*pi*gamma(2/3)/(2ˆ(14/3)*3ˆ(1/2)*(gamma(11/6))ˆ2) ...

*Cn2*kˆ2.*L).ˆ(−3/5);

Listing C.16. stats2param.m

function [Cn2 L] = stats2param(r0, R, lam)

% [Cn2 L] = stats2param(r0, R, lam)

% Calculates the atmospheric turburlence parameters necessary to produce

% the desired field statistical characteristics. Assumes a point source

% beacon and constant turbulence.

%

% r0: Atmospheric coherence length

% R: Rytov number

% lam: Wavelenth of the field [m]

%

% Cn2: Index−of−refraction structure function coefficient [mˆ−2/3]

% L: Propagation distance [m]

%

% By: Daniel J. Wheeler

k = 2*pi/lam;

alpha = 5ˆ(11/6)*pi*gamma(2/3) ...

/(2ˆ(43/6)*3ˆ(4/3)*(gamma(11/6))ˆ2*(gamma(6/5))ˆ(5/6));

beta = 9*(3−sqrt(3))*sqrt(pi)*gamma(2/3)*gamma(7/6)*gamma(11/6) ...

/(2ˆ(37/6)*gamma(1/3));

Cn2 = 1./(alphaˆ(11/5)*(R/beta).ˆ(6/5)*kˆ3.*r0.ˆ(11/3));

L = (alpha/beta*R).ˆ(6/5)*k.*r0.ˆ2;
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